Repository logo
 
Publication

Adaptive recommendation in online environments

dc.contributor.authorAzambuja, Rogério Xavier de
dc.contributor.authorMorais, A. Jorge
dc.contributor.authorFilipe, Vítor
dc.date.accessioned2023-03-23T15:08:04Z
dc.date.available2023-03-23T15:08:04Z
dc.date.issued2022
dc.description.abstractRecommender systems form a class of Artificial Intelligence systems that aim to recommend relevant items to the users. Due to their utility, it has gained attention in several applications domains and is high demanded for research. In order to obtain successful models in the recommendation problem in non-prohibitive computational time, different heuristics, architectures and information filtering techniques are studied with different datasets. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the sequential recommender systems development. This research focuses on models for managing sequential recommendation supported by session-based recommendation. This paper presents the characterization in the specific theme and the state-of-the-art towards study object of the thesis: the adaptive recommendation to mitigate the information overload in online environments.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-030-86887-1_17pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.2/13524
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectRecommender systemspt_PT
dc.subjectInformation filteringpt_PT
dc.subjectSequential recommendationpt_PT
dc.subjectSession-based recommendationpt_PT
dc.subjectDNN recommendationpt_PT
dc.titleAdaptive recommendation in online environmentspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage189pt_PT
oaire.citation.startPage185pt_PT
oaire.citation.titleDCAI 2021. Distributed Computing and Artificial Intelligence, Volume 2: Special Sessions. 18th International Conferencept_PT
oaire.citation.volume332pt_PT
person.familyNamede Azambuja
person.familyNameMorais
person.familyNameJesus Filipe
person.givenNameRogério Xavier
person.givenNameA. Jorge
person.givenNameVítor Manuel
person.identifierD-1723-2009
person.identifier.ciencia-idF314-1D77-536E
person.identifier.ciencia-idE716-23C3-FAFF
person.identifier.orcid0000-0002-1746-2039
person.identifier.orcid0000-0003-2224-1609
person.identifier.orcid0000-0002-3747-6577
person.identifier.scopus-author-id57194584599
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication80e5d418-7b39-49cb-99d1-95621079aef8
relation.isAuthorOfPublication571a1c49-329b-4b4e-ad48-78c5ff9c6e01
relation.isAuthorOfPublication1aa26598-8e13-4366-8183-eae03067003a
relation.isAuthorOfPublication.latestForDiscovery571a1c49-329b-4b4e-ad48-78c5ff9c6e01

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RogerioAzambuja_etal.pdf
Size:
4.84 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: