Repository logo
 
Publication

Predicting cybersecurity risk: a methodology for assessments

dc.contributor.authorFerreira, Daniel Jorge
dc.contributor.authorSão Mamede, Henrique
dc.date.accessioned2023-06-19T10:32:37Z
dc.date.available2023-06-19T10:32:37Z
dc.date.issued2022
dc.description.abstractWith the current impulse of Cyberattacks, data becomes of central importance. Many challenges in how they are used also have to be discussed. Defining a suitable cybersecurity incident response model is a critical challenge that all companies face today. A high number of incidents happen daily and for which there is not always an adequate response. This is due to the lack of data-based predictive models (evidence). There is a significant investment in research to identify the main factors that can cause such incidents, always trying to have the most appropriate answer and ultimately boosting responsiveness and success. At the same time, several different methodologies assess organizations' risk management and maturity level.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.56394/aris2.v2i2.23pt_PT
dc.identifier.issn2795-4560
dc.identifier.urihttp://hdl.handle.net/10400.2/14077
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/pt_PT
dc.subjectRiskpt_PT
dc.subjectCybersecuritypt_PT
dc.subjectInformationpt_PT
dc.subjectNISTpt_PT
dc.subjectISOpt_PT
dc.titlePredicting cybersecurity risk: a methodology for assessmentspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage63pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage50pt_PT
oaire.citation.titleARIS2 - Advanced Research on Information Systems Securitypt_PT
oaire.citation.volume2pt_PT
person.familyNameSão Mamede
person.givenNameHenrique
person.identifierR-002-0P0
person.identifier.ciencia-id7F17-9DAD-C007
person.identifier.orcid0000-0002-5383-9884
person.identifier.scopus-author-id36458782500
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication86fd6131-eed5-42be-9639-9466ddf680ab
relation.isAuthorOfPublication.latestForDiscovery86fd6131-eed5-42be-9639-9466ddf680ab

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Predicting Cybersecurity Risk - A Methodology for Assessments.pdf
Size:
484.03 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: