Logo do repositório
 
Publicação

The application of artificial intelligence in recommendation systems reinforced through assurance of learning in personalized environments of e-Learning

dc.contributor.authorBottaro Fresneda, Fernando Cesare
dc.contributor.authorSantos, Arnaldo
dc.contributor.authorMartins, Paulo
dc.contributor.authorReis, Leonilde
dc.date.accessioned2026-02-16T15:52:51Z
dc.date.available2026-02-16T15:52:51Z
dc.date.issued2024en_US
dc.date.updated2026-02-11T17:01:20Z
dc.description.abstractLearning environments unquestionably enable learners to develop their pedagogical and scientific processes efficiently and effectively. Thus, con-sidering the impossibility of not having conditions of autonomy over the routine underlying the studies and, consequently, not having guarantees of the learning carried out makes the learners experience gaps in the domain of materials ade-quate to their actual needs. The paper's objective is to present the relevance of the applicability of Artificial Intelligence in Recommendation Systems, reinforced through the Assurance of Learning, oriented towards adaptive-personalized prac-tice in corporate e-learning contexts. The research methodology underlying the work fell on Design Science Research, as it is considered adequate to support the research, given the need to carry out the design phases, development, construc-tion, evaluation, validation of the artefact and, finally, communication of the re-sults. The main underlying results instigate the development of an Adaptive-Per-sonalized Learning framework for corporate e-learning, provided with models (methods and algorithms) of Artificial Intelligence and guided using the Assur-ance of (the) Learning process. It becomes central that learners can enjoy ade-quate academic development. In this sense, the framework has an implicit struc-ture that promotes the definition of personalized attributes, which involves rec-ommendations and customizations of content per profile, including training con-tent that will be suggested and learning activity content that will be continuously monitored, given the specific needs of learners.eng
dc.description.versionN/A
dc.identifier.authenticusidP-010-2GNen_US
dc.identifier.doi10.1007/978-3-031-45645-9_50en_US
dc.identifier.eid2-s2.0-85186760320en_US
dc.identifier.slugcv-prod-3852072
dc.identifier.urihttp://hdl.handle.net/10400.2/21318
dc.identifier.wosWOS:001259458100050en_US
dc.language.isoeng
dc.peerreviewedyes
dc.rights.uriN/A
dc.subjectArtificial intelligence
dc.subjectRecommendation systems
dc.subjectAssurance of learning
dc.subjectAdaptive-personalized learning
dc.subjectLearning analytics
dc.titleThe application of artificial intelligence in recommendation systems reinforced through assurance of learning in personalized environments of e-Learningeng
dc.typebook parten_US
dspace.entity.typePublication
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameBottaro Fresneda
person.familyNameSantos
person.familyNameMartins
person.familyNameReis
person.givenNameFernando Cesare
person.givenNameArnaldo
person.givenNamePaulo
person.givenNameLeonilde
person.identifierhttps://scholar.google.pt/citations?user=ik_0xPkAAAAJ&hl=pt-PT
person.identifier.ciencia-id3211-438A-A256
person.identifier.ciencia-idE614-2ECC-2D48
person.identifier.ciencia-idB61D-AF04-BEF3
person.identifier.orcid0000-0002-8340-7900
person.identifier.orcid0000-0001-5139-6728
person.identifier.orcid0000-0002-3040-9080
person.identifier.orcid0000-0002-4398-8384
person.identifier.ridL-5119-2014
person.identifier.scopus-author-id24721665200
rcaap.cv.cienciaid3211-438A-A256 | Arnaldo Manuel Pinto dos Santos
rcaap.rightsopenAccessen_US
relation.isAuthorOfPublicationdd13ec1f-c66e-4d70-8e1f-356d31dbe1ad
relation.isAuthorOfPublicationb40e1515-a3da-429d-83f6-717be6d9f30d
relation.isAuthorOfPublication56e28bd6-6b80-4b7e-b7ea-ffbe10b560be
relation.isAuthorOfPublication46a9025b-8bf0-4924-b320-20d107b74e12
relation.isAuthorOfPublication.latestForDiscoveryb40e1515-a3da-429d-83f6-717be6d9f30d

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
Fresneda_artigo_cap_livro.pdf
Tamanho:
428.22 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.97 KB
Formato:
Item-specific license agreed upon to submission
Descrição: