Publication
Data pre-processing and data generation in the student flow case study
dc.contributor.author | Cavique, Luís | |
dc.contributor.author | Pombinho, Paulo | |
dc.contributor.author | Tallón Ballesteros, Antonio J. | |
dc.contributor.author | Correia, Luís | |
dc.date.accessioned | 2020-11-18T17:32:21Z | |
dc.date.available | 2020-11-18T17:32:21Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Education covers a range of sectors from kindergarten to higher education. In the education system, each grade has three possible outcomes: dropout, retention and pass to the next grade. In this work, we study the data from the Department of Statistics of Education and Science (DGEEC) of the Education Ministry. DGEEC maintains those outcomes for each school year, therefore, this study seeks a longitudinal view based on student flow. The document reports the data pre-processing, a stochastic model based on the pre-processed data and a data generation process that uses the previous model. | pt_PT |
dc.description.sponsorship | The authors would like to thank the FCT Projects of Scientific Research and Technological Development in Data Science and Artificial Intelligence in Public Administration, 2018-2022 (DSAIPA/DS/0039/2018), for its support. LCav, PP and LCor also acknowledge support by UID/MULTI/04046/2103 center grant from FCT, Portugal (to BioISI). | pt_PT |
dc.description.sponsorship | UID/MULTI/04046/2103 | |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1007/978-3-030-62365-4_4 | pt_PT |
dc.identifier.isbn | 978-3-030-62364-7(Print) | |
dc.identifier.isbn | 978-3-030-62365-4 (Online) | |
dc.identifier.uri | http://hdl.handle.net/10400.2/10184 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Lecture Notes in Computer Science - Springer | pt_PT |
dc.subject | Data pre-processing | pt_PT |
dc.subject | Data generation | pt_PT |
dc.subject | Student flow | pt_PT |
dc.subject | Stochastic model | pt_PT |
dc.title | Data pre-processing and data generation in the student flow case study | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0039%2F2018/PT | |
oaire.citation.endPage | 43 | pt_PT |
oaire.citation.startPage | 35 | pt_PT |
oaire.citation.title | Intelligent Data Engineering and Automated Learning – IDEAL 2020 | pt_PT |
oaire.citation.volume | 12490 | pt_PT |
oaire.fundingStream | 3599-PPCDT | |
person.familyName | Cavique | |
person.familyName | Pombalinho | |
person.familyName | Tallón Ballesteros | |
person.familyName | Correia | |
person.givenName | Luís | |
person.givenName | Paulo | |
person.givenName | Antonio Javier | |
person.givenName | Luís | |
person.identifier | F-3440-2016 | |
person.identifier.ciencia-id | 911E-84AC-3956 | |
person.identifier.ciencia-id | AF18-066F-60F6 | |
person.identifier.ciencia-id | CC18-5389-6CBA | |
person.identifier.orcid | 0000-0002-5590-1493 | |
person.identifier.orcid | 0000-0001-7583-6791 | |
person.identifier.orcid | 0000-0002-9699-1894 | |
person.identifier.orcid | 0000-0003-2439-1168 | |
person.identifier.rid | M-3656-2013 | |
person.identifier.scopus-author-id | 36192484400 | |
person.identifier.scopus-author-id | 56865595100 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 40906a16-46a2-42f1-b26d-7db7012294ee | |
relation.isAuthorOfPublication | d7cf5c07-3cfa-4ff3-9e05-7bbcdccf0e1b | |
relation.isAuthorOfPublication | dafdc6ef-a36d-4a85-92d2-6140bd1082cd | |
relation.isAuthorOfPublication | 527c9b62-536d-45b2-bce6-ac856844f41e | |
relation.isAuthorOfPublication.latestForDiscovery | d7cf5c07-3cfa-4ff3-9e05-7bbcdccf0e1b | |
relation.isProjectOfPublication | 684b93c3-a43e-48bc-9043-53f900a0d65a | |
relation.isProjectOfPublication.latestForDiscovery | 684b93c3-a43e-48bc-9043-53f900a0d65a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- IDEAL 2020_Data pre-processing.pdf
- Size:
- 744.68 KB
- Format:
- Adobe Portable Document Format