Publication
On finite complete presentations and exact decompositions of semigroups
dc.contributor.author | Araújo, João | |
dc.contributor.author | Malheiro, António | |
dc.date.accessioned | 2015-03-24T10:37:24Z | |
dc.date.available | 2015-03-24T10:37:24Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We prove that given a finite (zero) exact right decomposition (M, T) of a semigroup S, if M is defined by a finite complete presentation, then S is also defined by a finite complete presentation. Exact right decompositions are natural generalizations to semigroups of coset decompositions in groups. As a consequence, we deduce that any Zappa–Szép extension of a monoid defined by a finite complete presentation, by a finite monoid, is also defined by such a presentation. It is also proved that a semigroup M 0[A; I, J; P], where A and P satisfy some very general conditions, is also defined by a finite complete presentation. | por |
dc.identifier.citation | Araújo, João; Malheiro, António - On finite complete presentations and exact decompositions of semigroups. "Communications in Algebra" [Em linha]. ISSN 0092-7872 (Print) 1532-4125 (Online). Vol. 39, nº 10 (2011), p. 1-12 | por |
dc.identifier.doi | 10.1080/00927872.2010.514314 | |
dc.identifier.issn | 0092-7872 | |
dc.identifier.issn | 1532-4125 | |
dc.identifier.uri | http://hdl.handle.net/10400.2/3807 | |
dc.language.iso | eng | por |
dc.peerreviewed | yes | por |
dc.title | On finite complete presentations and exact decompositions of semigroups | por |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 12 | por |
oaire.citation.startPage | 1 | por |
oaire.citation.title | Communications in Algebra | por |
person.familyName | Ribeiro Soares Gonçalves de Araújo | |
person.givenName | João Jorge | |
person.identifier.ciencia-id | EC1F-273A-9F24 | |
person.identifier.orcid | 0000-0001-6655-2172 | |
rcaap.rights | openAccess | por |
rcaap.type | article | por |
relation.isAuthorOfPublication | 1f7b349c-3251-480d-a3ac-e3cb4ef44f22 | |
relation.isAuthorOfPublication.latestForDiscovery | 1f7b349c-3251-480d-a3ac-e3cb4ef44f22 |