Logo do repositório
 
A carregar...
Miniatura
Publicação

Sobolev homeomorphisms are dense in volume preserving automorphisms

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
JFA.pdf370.45 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In this paper we prove a weak version of Lusin’s theorem for the space of Sobolev-(1,p) volume preserving homeomor- phisms on closed and connected n-dimensional manifolds, n ≥ 3, for p < n − 1. We also prove that if p > n this result is not true. More precisely, we obtain the density of Sobolev-(1,p) homeomorphisms in the space of volume pre- serving automorphisms, for the weak topology. Furthermore, the regularization of an automorphism in a uniform ball cen- tered at the identity can be done in a Sobolev-(1, p) ball with the same radius centered at the identity.

Descrição

Palavras-chave

Lusin theorem Volume preserving Sobolev homeomorphism

Contexto Educativo

Citação

A. Azevedo, D.Azevedo, M. Bessa, M.J. Torres, Sobolev homeomorphisms are dense in volume preserving automorphisms, 276, 10, 3261-3274, 2019

Unidades organizacionais

Fascículo