Repository logo
 
Publication

Uncovering abnormal water consumption patterns for sustainability’s sake: a statistical approach

datacite.subject.sdg12:Produção e Consumo Sustentáveispt_PT
datacite.subject.sdg17:Parcerias para a Implementação dos Objetivospt_PT
dc.contributor.authorBorges, Ana
dc.contributor.authorCordeiro, Clara
dc.contributor.authorRamos, Maria do Rosário
dc.date.accessioned2023-01-05T13:24:54Z
dc.date.available2023-01-05T13:24:54Z
dc.date.issued2022-11-29
dc.description.abstractMonitoring domestic water usage may help the water utilities uncover abnormal water consumption. In this context, it is necessary to improve and develop tools based on data analysis of households’ meter readings. This study contributes to this goal by using a statistical methodology that detects abnormal water consumption patterns, namely, significant increases or decreases. This approach relies on a combination of methods that analyse billed water consumption time series. The first step is to decompose the time series using Seasonal-Trend decomposition based on Loess. Next, breakpoint analysis is performed on the seasonally adjusted time series to look for changes in the pattern over time. Afterwards, the Mann–Kendall test and Sen’s slope estimator are applied to assess whether there are significant increases or decreases in water consumption. The strategy is applied to water consumption data from the Algarve, Portugal, successfully detecting breakpoints associated with significant increasing or decreasing trends.pt_PT
dc.description.sponsorshipFCT—Fundação para a Ciência e Tecnologia through projects UIDB/04728/2020 and UIDB/00006/2020pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBorges, A., Cordeiro, C., Rosário Ramos, M. (2022). Uncovering Abnormal Water Consumption Patterns for Sustainability’s Sake: A Statistical Approach. In: Bispo, R., Henriques-Rodrigues, L., Alpizar-Jara, R., de Carvalho, M. (eds) Recent Developments in Statistics and Data Science. SPE 2021. Springer Proceedings in Mathematics & Statistics, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-031-12766-3_8pt_PT
dc.identifier.doi10.1007/978-3-031-12766-3_8pt_PT
dc.identifier.isbn978-3-031-12766-3
dc.identifier.urihttp://hdl.handle.net/10400.2/13047
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationCentre of Statistics and its Applications
dc.subjectBreakpointspt_PT
dc.subjectTime series decompositionpt_PT
dc.subjectTrend analysispt_PT
dc.subjectWater consumptionpt_PT
dc.titleUncovering abnormal water consumption patterns for sustainability’s sake: a statistical approachpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleCentre of Statistics and its Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00006%2F2020/PT
oaire.citation.conferencePlaceÉvorapt_PT
oaire.citation.endPage108pt_PT
oaire.citation.startPage99pt_PT
oaire.citation.titleSPE 2021.International Conference on Congress of the Portuguese Statistical Societypt_PT
oaire.citation.volume398pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameRamos
person.givenNameMaria do Rosário
person.identifier206757
person.identifier.ciencia-id3A1F-E648-078D
person.identifier.orcid0000-0001-9114-0807
person.identifier.ridP-4530-2015
person.identifier.scopus-author-id54403639500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc6cdb7b7-607d-4775-947f-d153ff6dded2
relation.isAuthorOfPublication.latestForDiscoveryc6cdb7b7-607d-4775-947f-d153ff6dded2
relation.isProjectOfPublication200da949-b304-425e-8937-4221c1b2f32b
relation.isProjectOfPublication.latestForDiscovery200da949-b304-425e-8937-4221c1b2f32b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ABorges_CCordeiro_MRRamos.Uncovering Abnormal Water Consumption Patterns2022.pdf
Size:
240.72 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: