Publication
Uncovering abnormal water consumption patterns for sustainability’s sake: a statistical approach
datacite.subject.sdg | 12:Produção e Consumo Sustentáveis | pt_PT |
datacite.subject.sdg | 17:Parcerias para a Implementação dos Objetivos | pt_PT |
dc.contributor.author | Borges, Ana | |
dc.contributor.author | Cordeiro, Clara | |
dc.contributor.author | Ramos, Maria do Rosário | |
dc.date.accessioned | 2023-01-05T13:24:54Z | |
dc.date.available | 2023-01-05T13:24:54Z | |
dc.date.issued | 2022-11-29 | |
dc.description.abstract | Monitoring domestic water usage may help the water utilities uncover abnormal water consumption. In this context, it is necessary to improve and develop tools based on data analysis of households’ meter readings. This study contributes to this goal by using a statistical methodology that detects abnormal water consumption patterns, namely, significant increases or decreases. This approach relies on a combination of methods that analyse billed water consumption time series. The first step is to decompose the time series using Seasonal-Trend decomposition based on Loess. Next, breakpoint analysis is performed on the seasonally adjusted time series to look for changes in the pattern over time. Afterwards, the Mann–Kendall test and Sen’s slope estimator are applied to assess whether there are significant increases or decreases in water consumption. The strategy is applied to water consumption data from the Algarve, Portugal, successfully detecting breakpoints associated with significant increasing or decreasing trends. | pt_PT |
dc.description.sponsorship | FCT—Fundação para a Ciência e Tecnologia through projects UIDB/04728/2020 and UIDB/00006/2020 | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Borges, A., Cordeiro, C., Rosário Ramos, M. (2022). Uncovering Abnormal Water Consumption Patterns for Sustainability’s Sake: A Statistical Approach. In: Bispo, R., Henriques-Rodrigues, L., Alpizar-Jara, R., de Carvalho, M. (eds) Recent Developments in Statistics and Data Science. SPE 2021. Springer Proceedings in Mathematics & Statistics, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-031-12766-3_8 | pt_PT |
dc.identifier.doi | 10.1007/978-3-031-12766-3_8 | pt_PT |
dc.identifier.isbn | 978-3-031-12766-3 | |
dc.identifier.uri | http://hdl.handle.net/10400.2/13047 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer | pt_PT |
dc.relation | Centre of Statistics and its Applications | |
dc.subject | Breakpoints | pt_PT |
dc.subject | Time series decomposition | pt_PT |
dc.subject | Trend analysis | pt_PT |
dc.subject | Water consumption | pt_PT |
dc.title | Uncovering abnormal water consumption patterns for sustainability’s sake: a statistical approach | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Centre of Statistics and its Applications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00006%2F2020/PT | |
oaire.citation.conferencePlace | Évora | pt_PT |
oaire.citation.endPage | 108 | pt_PT |
oaire.citation.startPage | 99 | pt_PT |
oaire.citation.title | SPE 2021.International Conference on Congress of the Portuguese Statistical Society | pt_PT |
oaire.citation.volume | 398 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Ramos | |
person.givenName | Maria do Rosário | |
person.identifier | 206757 | |
person.identifier.ciencia-id | 3A1F-E648-078D | |
person.identifier.orcid | 0000-0001-9114-0807 | |
person.identifier.rid | P-4530-2015 | |
person.identifier.scopus-author-id | 54403639500 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | c6cdb7b7-607d-4775-947f-d153ff6dded2 | |
relation.isAuthorOfPublication.latestForDiscovery | c6cdb7b7-607d-4775-947f-d153ff6dded2 | |
relation.isProjectOfPublication | 200da949-b304-425e-8937-4221c1b2f32b | |
relation.isProjectOfPublication.latestForDiscovery | 200da949-b304-425e-8937-4221c1b2f32b |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ABorges_CCordeiro_MRRamos.Uncovering Abnormal Water Consumption Patterns2022.pdf
- Size:
- 240.72 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.97 KB
- Format:
- Item-specific license agreed upon to submission
- Description: