Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Dynamics of a Non-Autonomous ODE System Occurring in Coagulation TheoryPublication . Costa, Fernando Pestana da; Sasportes, RafaelWe consider a constant coefficient coagulation equation with Becker–D¨oring type interactions and power law input of monomers J1(t)=αtω, with α > 0 and ω>−1 2 . For this infinite dimensional system we prove solutions converge to similarity profiles as t and j converge to infinity in a similarity way, namely with either j/ς or (j −ς)/√ς constants, where ς =ς(t) is a function of t only. This work generalizes to the non-autonomous case a recent result of da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398. and provides a rigorous derivation of formal results obtained by Wattis J. Phys. A: Math. Gen. 37, 7823–7841. The main part of the approach is the analysis of a bidimensional non-autonomous system obtained through an appropriate change of variables; this is achieved by the use of differential inequalities and qualitative theory methods. The results about rate of convergence of solutions of the bidimensional system thus obtained are fed into an integral formula representation for the solutions of the infinite dimensional system which is then estimated by an adaptation of methods used by da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398.
- Dynamical problems in coagulation equationsPublication . Sasportes, Rafael; Costa, Fernando Pestana daNeste trabalho são analisados alguns aspectos do comportamento asimptótico dos sistemas de um número infinito de equações diferenciais ordinárias que modelam a cinética de partículas de coagulação dados por $\dot{c}_1 = \alpha t^{\omega} - c_1^2 - c_1 \sum_{j=1}^{\infty} c_j},\dot{c}_j = c_1 c_{j-1} - c_1 c_j, j \geq 2 $, onde $\alpha>0 $ e $ \omega $ são constantes. Abordamos dois aspectos particularmente importantes do comportamento dinâmico das soluções deste sistema. Primeiro, o comportamento pontual das soluções quando $t \rightarrow +\infty $ e o comportamento da quantidade total de agregados definido por $\sum_{j=1}^{\infty} c_j $. O segundo aspecto prende-se com a ocorrência de comportamentos auto-semelhantes. No Capítulo 2 estudamos o caso $ \omega > -1/2 $ , no Capítulo 4 o caso $ \omega = -1/2 $ e no no Capítulo 5 o caso $ \omega < -1/2 $ utilizando uma mudança de variáveis apropriada. No Capítulo 3 consideramos uma extensão dos resultados do Capítulo 2, para fontes de monómeros do tipo $ J_1 (t)=\alpha t^\omega (1+\varepsilon (t)) $,onde $ \varepsilon (\cdot) $ é uma função contínua satisfazendo $ \varepsilon (t) \to 0 $ quando $ t \to +\infty $. Os casos $ -1 < \omega < -1/2$ e $ \omega < -1 $ são tratados no Capítulo 5 utilizando uma abordagem diferente, assente numa análise das propriedades de monotonicidade das soluções. Os resultados obtidos permitem-nos mostrar a existência de uma função $ \varsigma (t) \sim t^{\frac{\omega+2}{3}} $ e uma família de funções de escalamento $ \Phi_{1,\omega} $ para $ \omega > -\frac{1}{2} $ tais que $ c_j(t) \sim \varsigma (t)^{-a} \Phi(j \varsigma (t)^{-b}) $ se verifica para $ a=\frac{1-\omega}{2+\omega} $ e $ b=1 $. Resultados semelhantes são também obtidos no caso $ \omega = -\frac{1}{2} $. Para o caso $ \omega < -\frac{1}{2} $ alguns resultados parcias, e evidência numérica, sugerem que isso não acontece.
- Convergence to self-similarity in an addition model with power-like time-dependent input of monomersPublication . Costa, Fernando Pestana da; Sasportes, Rafael; Pinto, João TeixeiraIn this note we extend the results published in Ref. 1 to a coagulation system with Becker-Doring type interactions and time-dependent input of monomers $J_{1}(t)$ of power–like type: $J_{1}(t)/(\alpha t^{\omega }) \rightarrow 1$ as $t \rightarrow \infty$, with $\alpha > 0$ and $\omega > − \frac{1}{2}$. The general framework of the proof follows Ref. 1 but a different strategy is needed at a number of points.