Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • The skewness and kurtosis of the product of two normally distributed random variables
    Publication . Seijas-Macias, J. Antonio; Oliveira, Amilcar; Oliveira, Teresa
    The analysis of the product of two normally distributed variables does not seem to follow any known distribution. Fortunately, the moment-generating function is available and we can calculate the statistics of the product distribution: mean, variance, the skewness and kurtosis (excess of kurtosis). In this work, we have considered the role played by the parameters of the two normal distributions’ factors (mean and variance) on the values of the skewness and kurtosis of the product. Ranges of variation are defined for kurtosis and the skewness. The determination of the evolution of the skewness and kurtosis values of the product can be used to establish the normality of the product and how to modelize its distribution. Finally, the Pearson Inequality is proved for the skewness and kurtosis of the product of two normal random variables.
  • Approximating the distribution of the product of two normally distributed random variables
    Publication . Seijas-Macias, J. Antonio; Oliveira, Amilcar; Oliveira, Teresa A.; Leiva, Victor
    The distribution of the product of two normally distributed random variables has been an open problem from the early years in the XXth century. First approaches tried to determinate the mathematical and statistical properties of the distribution of such a product using different types of functions. Recently, an improvement in computational techniques has performed new approaches for calculating related integrals by using numerical integration. Another approach is to adopt any other distribution to approximate the probability density function of this product. The skew-normal distribution is a generalization of the normal distribution which considers skewness making it flexible. In this work, we approximate the distribution of the product of two normally distributed random variables using a type of skew-normal distribution. The influence of the parameters of the two normal distributions on the approximation is explored. When one of the normally distributed variables has an inverse coefficient of variation greater than one, our approximation performs better than when both normally distributed variables have inverse coefficients of variation less than one. A graphical analysis visually shows the superiority of our approach in relation to other approaches proposed in the literature on the topic.