Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Automatic detection of the best performing priority rule for the resource-constrained project scheduling problem
    Publication . Guo, Weikang; Vanhoucke, Mario; Coelho, José; Luo, Jingyu
    Priority rules are applied in many commercial software tools for scheduling projects under limited resources because of their known advantages such as the ease of implementation, their intuitive working, and their fast speed. Moreover, while numerous research papers present comparison studies between different priority rules, managers often do not know which rules should be used for their specific project, and therefore have no other choice than selecting a priority rule at random and hope for the best. This paper introduces a decision tree approach to classify and detect the best performing priority rule for the resource-constrained project scheduling problem (RCPSP). The research relies on two classification models to map project indicators onto the performance of the priority rule. Using such models, the performance of each priority rule can be predicted, and these predictions are then used to automatically select the best performing priority rule for a specific project with known network and resource indicator values. A set of computational experiment is set up to evaluate the performance of the newly proposed classification models using the most well-known priority rules from the literature. The experiments compare the performance of multi-label classification models with multi-class classification models, and show that these models can outperform the average performance of using any single priority rule. It will be argued that this approach can be easily extended to any extension of the RCPSP without changing the methodology used in this study.
  • Automated design of priority rules for resource-constrained project scheduling problem using surrogate-assisted genetic programming
    Publication . Luo, Jingyu; Vanhoucke, Mario; Coelho, José
    In the past few years, the genetic programming approach (GP) has been successfully used by researchers to design priority rules for the resource-constrained project scheduling problem (RCPSP) thanks to its high generalization ability and superior performance. However, one of the main drawbacks of the GP is that the fitness evaluation in the training process often requires a very high computational effort. In order to reduce the runtime of the training process, this research proposed four different surrogate models for the RCPSP. The experiment results have verified the effectiveness and the performance of the proposed surrogate models. It is shown that they achieve similar performance as the original model with the same number of evaluations and better performance with the same runtime. We have also tested the performance of one of our surrogate models with seven different population sizes to show that the selected surrogate model achieves similar performance for each population size as the original model, even when the searching space is sufficiently explored. Furthermore, we have investigated the accuracy of our proposed surrogate models and the size of the rules they designed. The result reveals that all the proposed surrogate models have high accuracy, and sometimes the rules found by them have a smaller size compared with the original model.
  • An efficient genetic programming approach to design priority rules for resource-constrained project scheduling problem
    Publication . Luo, Jingyu; Vanhoucke, Mario; Coelho, José; Guo, Weikang
    In recent years, machine learning techniques, especially genetic programming (GP), have been a powerful approach for automated design of the priority rule-heuristics for the resource-constrained project scheduling problem (RCPSP). However, it requires intensive computing effort, carefully selected training data and appropriate assessment criteria. This research proposes a GP hyper-heuristic method with a duplicate removal technique to create new priority rules that outperform the traditional rules. The experiments have verified the efficiency of the proposed algorithm as compared to the standard GP approach. Furthermore, the impact of the training data selection and fitness evaluation have also been investigated. The results show that a compact training set can provide good output and existing evaluation methods are all usable for evolving efficient priority rules. The priority rules designed by the proposed approach are tested on extensive existing datasets and newly generated large projects with more than 1,000 activities. In order to achieve better performance on small-sized projects, we also develop a method to combine rules as efficient ensembles. Computational comparisons between GP-designed rules and traditional priority rules indicate the superiority and generalization capability of the proposed GP algorithm in solving the RCPSP.