Mestrado em Estatística, Matemática e Computação | Master's Degree in Statistics, Mathematics and Computation - TMEMC
Permanent URI for this collection
Browse
Browsing Mestrado em Estatística, Matemática e Computação | Master's Degree in Statistics, Mathematics and Computation - TMEMC by advisor "Correia, Pedro Pezarat"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Máquinas de vetores suporte para classificação do Onset em dados temporais de eletromiografiaPublication . Silva, Luís Miguel Domingues Ferreira; Serranho, Pedro; Correia, Pedro PezaratOs estudos sobre parâmetros temporais em eletromiografia (EMG) focam a sua análise tendencialmente no onset, existindo uma escassez quanto à descrição e discussão dos fenómenos temporais. A dependência nos parâmetros dos algoritmos de deteção do onset e os diferentes métodos comprometem a reprodutibilidade de resultados. O objetivo deste trabalho é assim testar a performance de diferentes features no domínio do tempo na construção de modelos de Máquinas de Vetor Suporte (SVM) quanto à localização do onset. Sinal EMG de superfície foi recolhido durante o swing do golfe de 12 músculos (tronco e membro inferior) de 12 golfistas, 6 de handicap (Hc) baixo ( =1.4±2.5 <5) e 6 de handicap alto ( =24.6±4.2> 18). O sinal foi segmentado com janelas de 200 ms de 5 em 5 ms e depois foram extraídas as seguintes features no domínio do tempo: Valor Médio Absoluto, Comprimento do Formato da Onda, Diferença Absoluta do Desvio Padrão, Variância do EMG, Integral EMG e Detetor Logarítmico. As features foram selecionadas e ordenadas quanto à importância sendo construídos três conjuntos de 2, 4 e 6 features (F2, F4 e F6) para cada modelo. Após a realização de pesquisa de rede (grid-search), os melhores parâmetros quanto à precisão da classificação pelo modelo radial basis function (RBF) – SVM foram selecionados por cross-validation. O teste de Friedman foi aplicado para comparar os parâmetros ( , ) nos três conjuntos de features e a ANOVA mista para comparar a classificação e vetores suporte entre os grupos de features e grupos de handicap (alto Hc, baixo Hc e total). Verificamos que os grupos alto, baixo e total Hc apresentaram uma precisão de classificação de 90.3±4% (média±desvio-padrão), 90.8±4.9% e 89.4±3.7% para F2, 94.9±2.5%, 95.0±3.3%, 93.5%±3.2% para F4 e 95.2±2.4%, 95.1±3.2% e 93.6±3.3% para F6. Os valores dos parâmetros RBF, a classificação e o número de vetores suporte tende a ser similar entre F4 e F6, variando no entanto em relação a F2. Concluímos assim que quatro features garantem uma precisão na classificação superior a 90% em relação aos instantes de tempo classificados como antes e depois do onset podendo servir de base de construção de modelos SVM.