Repository logo
 
Publication

Discrete subgroups of locally definable groups

dc.contributor.authorBerarducci, A.
dc.contributor.authorEdmundo, Mário
dc.contributor.authorMamino, M.
dc.date.accessioned2014-01-08T12:39:43Z
dc.date.available2014-01-08T12:39:43Z
dc.date.issued2013-08
dc.description.abstractWe work in the category of locally definable groups in an o-minimal expansion of a field. Eleftheriou and Peterzil conjectured that every definably generated abelian connected group G in this category is a cover of a definable group. We prove that this is the case under a natural convexity assumption inspired by the same authors, which in fact gives a necessary and sufficient condition. The proof is based on the study of the zero-dimensional compatible subgroups of G. Given a locally definable connected group G (not necessarily definably generated), we prove that the n-torsion subgroup of G is finite and that every zero-dimensional compatible subgroup of G has finite rank. Under a convexity hypothesis, we show that every zero-dimensional compatible subgroup of G is finitely generatedpor
dc.identifier.citationBerarducci, A.; Edmundo, Mário Jorge; Mamino, M. - Discrete subgroups of locally definable groups. "Selecta Mathematica (New Series)" [Em linha]. ISSN 1420-9020 (Print) 1022-1824 (Online). Vol. 19, Nº 3 (2013), p. 1-17por
dc.identifier.issn1022-1824
dc.identifier.issn1420-9020
dc.identifier.urihttp://hdl.handle.net/10400.2/2762
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer-Verlagpor
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs00029-013-0123-9por
dc.subjectCoverspor
dc.subjectDiscrete subgroupspor
dc.subjectLocally definable groupspor
dc.titleDiscrete subgroups of locally definable groupspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage17por
oaire.citation.startPage1por
oaire.citation.titleSelecta Mathematica, New Seriespor
person.familyNameEdmundo
person.givenNameMário Jorge
person.identifierP-3392-2015
person.identifier.ciencia-id0310-CC24-B3B5
person.identifier.orcid0000-0002-3350-9271
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication67cdf4c4-936f-4d36-b7e3-bfc20693582b
relation.isAuthorOfPublication.latestForDiscovery67cdf4c4-936f-4d36-b7e3-bfc20693582b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BEM-ago2012.pdf
Size:
322.55 KB
Format:
Adobe Portable Document Format