Repository logo
 
Publication

Semigroups of matrices closed under conjugation by normal linear groups

dc.contributor.authorSilva, Fernando C.
dc.contributor.authorAraújo, João
dc.date.accessioned2012-01-02T12:25:14Z
dc.date.available2012-01-02T12:25:14Z
dc.date.issued2004
dc.description.abstractLet X be a finite set, T(X) be the monoid of all transformations on X and Sym(X) be the symmetric group on X. Recentely Levi, McAl- ister and McFadden proved that if |X| > 4, G is a normal subgroup of Sym(X) and a ∈ T(X) \ Sym(X), then ⟨g−1ag : g ∈ G⟩ = ⟨{a} ∪ G⟩ \ G. The aim of this paper is to prove a linear analogous of this result.por
dc.description.sponsorshipFundação para a Ciência e Tecnologia. POCTI/32440/MAT/2000por
dc.description.sponsorshipFundação Calouste Gulbenkian
dc.identifier.citationSilva, Fernando C.; Araújo, João - Semigroups of matrices closed under conjugation by normal linear groups. "JP Journal of Algebra, Number Theory and Applications" [Em linha]. ISSN 0972-5555. Vol. 5, nº 3 (2004), p. 535-545por
dc.identifier.issn0972-5555
dc.identifier.urihttp://hdl.handle.net/10400.2/2023
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherPushpa Publishing Housepor
dc.subjectSemigroupspor
dc.titleSemigroups of matrices closed under conjugation by normal linear groupspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceAllahabadpor
oaire.citation.endPage545por
oaire.citation.startPage535por
oaire.citation.titleJP Journal of Algebra, Number Theory and Applicationspor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.givenNameJoão Jorge
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.orcid0000-0001-6655-2172
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
15.pdf
Size:
110.73 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: