Publication
PLS-R calibration models for wine spirit volatile phenols prediction by near-infrared spectroscopy
datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | pt_PT |
datacite.subject.sdg | 12:Produção e Consumo Sustentáveis | pt_PT |
dc.contributor.author | Anjos, Ofélia | |
dc.contributor.author | Caldeira, Ilda | |
dc.contributor.author | Fernandes, Tiago | |
dc.contributor.author | Pedro, Soraia | |
dc.contributor.author | Vitória, Cláudia | |
dc.contributor.author | Alves, Sheila Cristina Oliveira | |
dc.contributor.author | Catarino, Sofia | |
dc.contributor.author | Canas, Sara | |
dc.date.accessioned | 2023-01-04T11:18:32Z | |
dc.date.available | 2023-01-04T11:18:32Z | |
dc.date.issued | 2021-12-31 | |
dc.description.abstract | Near-infrared spectroscopic (NIR) technique was used, for the first time, to predict volatile phenols content, namely guaiacol, 4-methyl-guaiacol, eugenol, syringol, 4-methyl-syringol and 4-allyl-syringol, of aged wine spirits (AWS). This study aimed to develop calibration models for the volatile phenol’s quantification in AWS, by NIR, faster and without sample preparation. Partial least square regression (PLS-R) models were developed with NIR spectra in the near-IR region (12,500–4000 cm−1) and those obtained from GC-FID quantification after liquid-liquid extraction. In the PLS-R developed method, cross-validation with 50% of the samples along a validation test set with 50% of the remaining samples. The final calibration was performed with 100% of the data. PLS-R models with a good accuracy were obtained for guaiacol (r2 = 96.34; RPD = 5.23), 4-methyl-guaiacol (r2 = 96.1; RPD = 5.07), eugenol (r2 = 96.06; RPD = 5.04), syringol (r2 = 97.32; RPD = 6.11), 4-methyl-syringol (r2 = 95.79; RPD = 4.88) and 4-allyl-syringol (r2 = 95.97; RPD = 4.98). These results reveal that NIR is a valuable technique for the quality control of wine spirits and to predict the volatile phenols content, which contributes to the sensory quality of the spirit beverages. | pt_PT |
dc.description.sponsorship | The authors thank “Centro de Biotecnologia de plantas” for the equipment availability and Vitor de Freitas as the Scientific Consultant of the Project PO-CI-01-0145-FEDER-027819. This research was funded by National Funds through FCT—Foundation for Science and Technology under the Project POCI-01-0145-FEDER-027819 (PTDC/OCE-ETA/27819/2017). This work is also funded by National Funds through FCT—Foundation for Science and Technology under the Projects UIDB/00239/2020 [CEF], UIDB/05183/2020 [MED]; UIDB/00100/2020, UIDP/00100/2020 [CQE]; UID/AGR/04129/2020, DL 57/2016/CP1382/CT0025 [LEAF]. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.3390/s22010286 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.2/12975 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | MDPI | pt_PT |
dc.relation | Forest Research Centre | |
dc.relation | Mediterranean Institute for Agriculture, Environment and Development | |
dc.relation | Centro de Química Estrutural | |
dc.relation | Centro de Química Estrutural | |
dc.relation | Not Available | |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/22/1/286 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | NIR | pt_PT |
dc.subject | Calibration models | pt_PT |
dc.subject | PLS-R | pt_PT |
dc.subject | Volatile phenols | pt_PT |
dc.subject | Aged wine spirit | pt_PT |
dc.title | PLS-R calibration models for wine spirit volatile phenols prediction by near-infrared spectroscopy | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Forest Research Centre | |
oaire.awardTitle | Mediterranean Institute for Agriculture, Environment and Development | |
oaire.awardTitle | Centro de Química Estrutural | |
oaire.awardTitle | Centro de Química Estrutural | |
oaire.awardTitle | Not Available | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00239%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05183%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00100%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00100%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/DL 57%2F2016/DL 57%2F2016%2FCP1382%2FCT0025/PT | |
oaire.citation.issue | 1 | pt_PT |
oaire.citation.startPage | 286 | pt_PT |
oaire.citation.title | Sensors | pt_PT |
oaire.citation.volume | 22 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | DL 57/2016 | |
person.familyName | Anjos | |
person.familyName | caldeira | |
person.familyName | Fernandes | |
person.familyName | Pedro | |
person.familyName | Vitória | |
person.familyName | Oliveira Alves | |
person.familyName | Catarino | |
person.familyName | de Almeida Lopes Canas | |
person.givenName | Ofélia | |
person.givenName | ilda | |
person.givenName | Tiago | |
person.givenName | Soraia Inês | |
person.givenName | Cláudia | |
person.givenName | Sheila Cristina de | |
person.givenName | Sofia | |
person.givenName | Sara Maria | |
person.identifier | G-2808-2012 | |
person.identifier | B-9350-2 | |
person.identifier.ciencia-id | C21D-D8C7-3037 | |
person.identifier.ciencia-id | 1915-F5F5-C6AD | |
person.identifier.ciencia-id | 8810-5C8A-08D0 | |
person.identifier.ciencia-id | 5011-C0CC-7186 | |
person.identifier.ciencia-id | 3E1A-CDB8-3D21 | |
person.identifier.ciencia-id | 7212-C53B-0F02 | |
person.identifier.ciencia-id | EB11-791E-0118 | |
person.identifier.orcid | 0000-0003-0267-3252 | |
person.identifier.orcid | 0000-0003-2151-2008 | |
person.identifier.orcid | 0000-0002-3374-612X | |
person.identifier.orcid | 0000-0002-7934-7183 | |
person.identifier.orcid | 0000-0003-3949-9999 | |
person.identifier.orcid | 0000-0002-9963-4673 | |
person.identifier.orcid | 0000-0002-6223-4377 | |
person.identifier.orcid | 0000-0002-9781-6481 | |
person.identifier.rid | B-4023-2016 | |
person.identifier.rid | B-6777-2013 | |
person.identifier.rid | D-2752-2013 | |
person.identifier.scopus-author-id | 23395659700 | |
person.identifier.scopus-author-id | 8056539300 | |
person.identifier.scopus-author-id | 24449123500 | |
person.identifier.scopus-author-id | 8354919700 | |
person.identifier.scopus-author-id | 6507398291 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | a0f1f9db-ae54-4d44-8da1-4a79006dfd12 | |
relation.isAuthorOfPublication | a1753a75-147e-436a-b7a1-db53f6f895c1 | |
relation.isAuthorOfPublication | fc21c4fc-108e-4b02-8413-5b06a96d97cc | |
relation.isAuthorOfPublication | 14a7e346-692a-4e7b-bb51-ae96fdbc52c2 | |
relation.isAuthorOfPublication | 5c2bdbab-460c-4b6f-8be3-fa1d77aa5e2c | |
relation.isAuthorOfPublication | 4d4dcc53-a225-4a34-9a6f-afb053c2c6bb | |
relation.isAuthorOfPublication | 8b73aac5-0d6a-4fbb-983a-f7db63583f3f | |
relation.isAuthorOfPublication | 7274a813-3b0d-4623-a988-9482a4117acb | |
relation.isAuthorOfPublication.latestForDiscovery | 7274a813-3b0d-4623-a988-9482a4117acb | |
relation.isProjectOfPublication | 6cd862c1-1cd6-4a81-a1a8-ea517b91f679 | |
relation.isProjectOfPublication | 40130f74-6b2b-4a17-9969-92a59556f57a | |
relation.isProjectOfPublication | 827740fc-9d32-4c94-83b4-4d6d5c2c523c | |
relation.isProjectOfPublication | 8945d5be-8e4c-445b-8a1f-b8b2ec77688c | |
relation.isProjectOfPublication | 19c14449-ddb4-4584-a866-e8763ffcc3d4 | |
relation.isProjectOfPublication.latestForDiscovery | 6cd862c1-1cd6-4a81-a1a8-ea517b91f679 |