Repository logo
 
Publication

Beyond algorithms: artificial intelligence driven talent identification with human insight

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg08:Trabalho Digno e Crescimento Económico
dc.contributor.authorFernandes, Tiago Jacob
dc.contributor.authorSão Mamede, Henrique
dc.contributor.authorBarroso, João Manuel Pereira
dc.contributor.authorSantos, Vitor Manuel Pereira Duarte dos
dc.date.accessioned2026-01-09T13:43:12Z
dc.date.available2026-01-09T13:43:12Z
dc.date.issued2025-11-07
dc.description.abstractThe rapid evolution of Artificial Intelligence (AI) is reshaping Human Resource Management (HRM), with growing interest in its role in talent identification. While AI has demonstrated effectiveness in analysing structured data, its limitations in assessing qualitative attributes such as creativity, adaptability, and emotional intelligence remain underexplored. This study addresses these gaps through an exploratory mixed-methods design, combining a global survey (n = 240) with semi-structured interviews of HR professionals. Quantitative analysis highlights patterns of association between key competencies, while qualitative findings provide contextual insights into perceptions of fairness, bias, and cultural resistance. The results suggest that AI can complement, but not replace, human judgement, supporting a Hybrid Evaluative Model that integrates algorithmic efficiency with human interpretation. The study contributes rare empirical evidence to a nascent field, highlights the ethical imperatives of bias mitigation and transparency, and underscores the importance of cultural context (collectivist versus individualist orientations) in shaping the acceptance and effectiveness of AI-enabled HR practices. These findings offer practical guidance for organisations and advance theory-building at the intersection of AI and HRM.eng
dc.identifier.citationFrança, T. J. F., São Mamede, J. H. P., Barroso, J. M. P., & dos Santos, V. M. P. D. (2025). Beyond Algorithms: Artificial Intelligence Driven Talent Identification with Human Insight. Intelligent Systems with Applications, 200604.
dc.identifier.doihttps://doi.org/10.1016/j.iswa.2025.200604
dc.identifier.issn2667-3053
dc.identifier.urihttp://hdl.handle.net/10400.2/20737
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationINESC TEC - INESC Technology and Science
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S2667305325001309
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectArtificial intelligence
dc.subjectPotential assessment
dc.subjectHuman capital
dc.subjectTalent management
dc.subjectNext-gen HR
dc.titleBeyond algorithms: artificial intelligence driven talent identification with human insighteng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleINESC TEC - INESC Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50014%2F2013/PT
oaire.citation.endPage29
oaire.citation.issue200604
oaire.citation.startPage1
oaire.citation.titleIntelligent Systems with Applications
oaire.citation.volume28
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSão Mamede
person.givenNameHenrique
person.identifierR-002-0P0
person.identifier.ciencia-id7F17-9DAD-C007
person.identifier.orcid0000-0002-5383-9884
person.identifier.scopus-author-id36458782500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication86fd6131-eed5-42be-9639-9466ddf680ab
relation.isAuthorOfPublication.latestForDiscovery86fd6131-eed5-42be-9639-9466ddf680ab
relation.isProjectOfPublication26fe0ebf-3c4b-446a-a4b6-e14b583f8681
relation.isProjectOfPublication.latestForDiscovery26fe0ebf-3c4b-446a-a4b6-e14b583f8681

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Beyond Algorithms.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: