Repository logo
 
Publication

Matrix theory for independence algebras

dc.contributor.authorAraújo, João
dc.contributor.authorBentz, Wolfram
dc.contributor.authorCameron, Peter
dc.contributor.authorKinyon, Michael
dc.contributor.authorKonieczny, Janusz
dc.date.accessioned2023-01-30T15:22:38Z
dc.date.available2023-06-01T00:30:23Z
dc.date.issued2022-06-01
dc.descriptionPreprint de J. Araújo, W. Bentz, P.J. Cameron, M. Kinyon, J. Konieczny, “Matrix Theory for Independence Algebras”, Linear Algebra and its Applications 642 (2022), 221-250.pt_PT
dc.description.abstractA universal algebra A with underlying set A is said to be a matroid algebra if (A, 〈·〉), where 〈·〉 denotes the operator subalgebra generated by, is a matroid. A matroid algebra is said to be an independence algebra if every mapping α : X → A defined on a minimal generating X of A can be extended to an endomorphism of A. These algebras are particularly well-behaved generalizations of vector spaces, and hence they naturally appear in several branches of mathematics, such as model theory, group theory, and semigroup theory. It is well known that matroid algebras have a well-defined notion of dimension. Let A be any independence algebra of finite dimension n, with at least two elements. Denote by End(A) the monoid of endomorphisms of A. In the 1970s, Glazek proposed the problem of extending the matrix theory for vector spaces to a class of universal algebras which included independence algebras. In this paper, we answer that problem by developing a theory of matrices for (almost all) finite-dimensional independence algebras. In the process of solving this, we explain the relation between the classification of inde- pendence algebras obtained by Urbanik in the 1960s, and the classification of finite indepen- dence algebras up to endomorphism-equivalence obtained by Cameron and Szab ́o in 2000. (This answers another question by experts on independence algebras.) We also extend the classification of Cameron and Szab ́o to all independence algebras. The paper closes with a number of questions for experts on matrix theory, groups, semi- groups, universal algebra, set theory or model theory.pt_PT
dc.description.sponsorshipThis work was funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020, UIDP/00297/2020 (Center for Mathematics and Applications) and PTDC/MAT/PUR/31174/2017.pt_PT
dc.description.sponsorshipPTDC/MAT/PUR/31174/2017
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationJ. Araújo, W. Bentz, P.J. Cameron, M. Kinyon, J. Konieczny, “Matrix Theory for Independence Algebras”, Linear Algebra and its Applications 642 (2022), 221-250.pt_PT
dc.identifier.doi10.1016/j.laa.2022.02.021pt_PT
dc.identifier.eissn1873-1856
dc.identifier.issn0024-3795
dc.identifier.urihttp://hdl.handle.net/10400.2/13251
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationCenter for Mathematics and Applications
dc.relationCenter for Mathematics and Applications
dc.subjectMatrix theorypt_PT
dc.subjectSemigroupspt_PT
dc.subjectUniversal algebrapt_PT
dc.subjectGroupspt_PT
dc.subjectFieldspt_PT
dc.subjectModel theorypt_PT
dc.titleMatrix theory for independence algebraspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Mathematics and Applications
oaire.awardTitleCenter for Mathematics and Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00297%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00297%2F2020/PT
oaire.citation.endPage250pt_PT
oaire.citation.startPage221pt_PT
oaire.citation.titleLinear Algebra and its Applicationspt_PT
oaire.citation.volume642pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameRibeiro Soares Gonçalves de Araújo
person.familyNameBentz
person.familyNameCameron
person.familyNameKinyon
person.givenNameJoão Jorge
person.givenNameWolfram
person.givenNamePeter
person.givenNameMichael Kinyon
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.ciencia-id2A10-E0DD-5A23
person.identifier.orcid0000-0001-6655-2172
person.identifier.orcid0000-0003-0002-1277
person.identifier.orcid0000-0003-3130-9505
person.identifier.orcid0000-0002-5227-8632
person.identifier.scopus-author-id7202869893
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication20420639-0e78-4226-a2e3-892cd2eaa7e8
relation.isAuthorOfPublication0bd89451-91f9-48d4-a05d-1175eca332fa
relation.isAuthorOfPublication0379041c-7e5e-4875-9f98-801efefa6330
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isProjectOfPublicationcd254f72-96c1-4c38-9af6-3997cafdeea9
relation.isProjectOfPublicationd0c47913-3f47-4db3-ad63-309df43b118e
relation.isProjectOfPublication.latestForDiscoveryd0c47913-3f47-4db3-ad63-309df43b118e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ABCKK Matrices Ind Alg.pdf
Size:
427.83 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: