Repository logo
 
Publication

Mitigating false negatives in imbalanced datasets: an ensemble approach

dc.contributor.authorCavique, Luís
dc.contributor.authorVasconcelos, Marcelo
dc.date.accessioned2025-10-14T10:11:12Z
dc.date.available2025-10-14T10:11:12Z
dc.date.issued2025-01-01
dc.description.abstractImbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimize False Negative Rates (FNR) in imbalanced datasets. The new approach strategically combines data-level, algorithmic-level, and hybrid-level approaches to enhance overall predictive capabilities while minimizing computational resources using the Set Covering Problem (SCP) formulation. Through a comprehensive evaluation of diverse datasets, MinFNR consistently outperforms individual algorithms, showing its potential for applications where the cost of false negatives is substantial, such as fraud detection and medical diagnosis. This work also contributes to ongoing efforts to improve the reliability and effectiveness of machine learning algorithms in real imbalanced scenarios.eng
dc.identifier.doi10.1016/j.eswa.2024.125674
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/10400.2/20357
dc.language.isoeng
dc.peerreviewedyes
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectImbalanced dataset
dc.subjectFalse negative rate
dc.subjectEnsemble algorithms
dc.subjectFraud detection
dc.subjectSet covering problem
dc.titleMitigating false negatives in imbalanced datasets: an ensemble approacheng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleExpert Systems With Applications
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCavique
person.familyNameVasconcelos
person.givenNameLuís
person.givenNameMarcelo
person.identifier.ciencia-id911E-84AC-3956
person.identifier.orcid0000-0002-5590-1493
person.identifier.orcid0000-0002-8563-1404
relation.isAuthorOfPublication40906a16-46a2-42f1-b26d-7db7012294ee
relation.isAuthorOfPublication0a633731-93d4-4b66-9e7f-73691a06def7
relation.isAuthorOfPublication.latestForDiscovery40906a16-46a2-42f1-b26d-7db7012294ee

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
z paper MinFNR final.pdf
Size:
1014.22 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: