Repository logo
 
Publication

On the stability of the set of hyperbolic closed orbits of a hamiltonian

dc.contributor.authorBessa, Mário
dc.contributor.authorFerreira, Celia
dc.contributor.authorRocha, Jorge
dc.date.accessioned2023-05-26T10:38:03Z
dc.date.available2023-05-26T10:38:03Z
dc.date.issued2009-09-21
dc.description.abstractA Hamiltonian level, say a pair $(H,e)$ of a Hamiltonian $H$ and an energy $e \in \mathbb{R}$, is said to be Anosov if there exists a connected component $\mathcal{E}_{H,e}$ of $H^{-1}({e})$ which is uniformly hyperbolic for the Hamiltonian flow $X_H^t$. The pair $(H,e)$ is said to be a Hamiltonian star system if there exists a connected component $\mathcal{E}^\star_{H,e}$ of the energy level $H^{-1}({{e}})$ such that all the closed orbits and all the critical points of $\mathcal{E}^\star_{H,e}$ are hyperbolic, and the same holds for a connected component of the energy level $\tilde{H}^{-1}({\tilde{e}})$, close to $\mathcal{E}^\star_{H,e}$, for any Hamiltonian $\tilde{H}$, in some $C^2$-neighbourhood of $H$, and $\tilde{e}$ in some neighbourhood of $e$. In this article we prove that for any four-dimensional Hamiltonian star level $(H,e)$ if the surface $\mathcal{E}^\star_{H,e}$ does not contain critical points, then $X_H^t|_{\mathcal{E}^\star_{H,e}}$ is Anosov; if $\mathcal{E}^\star_{H,e}$ has critical points, then there exists $\tilde{e}$, arbitrarily close to $e$, such that $X_H^t|_{\mathcal{E}^\star_{H,\tilde{e}}}$ is Anosov.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationM. Bessa, C. Ferreira, J. Rocha, On the Stability of the Set of Hyperbolic Closed Orbits of a Hamiltonian, Mathematical Proceedings of the Cambridge Philosophical Society, 149, 2, 373-383, 2009pt_PT
dc.identifier.doi10.1017/S0305004110000253pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.2/13862
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherCambridge University Presspt_PT
dc.relationABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
dc.relationPROGRAMA INTER-UNIVERSITÁRIO DE DOUTORAMENTO EM MATEMÁTICA
dc.titleOn the stability of the set of hyperbolic closed orbits of a hamiltonianpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO
oaire.awardTitlePROGRAMA INTER-UNIVERSITÁRIO DE DOUTORAMENTO EM MATEMÁTICA
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBPD%2F20890%2F2004/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/PIDDAC/SFRH%2FBD%2F33100%2F2007/PT
oaire.citation.endPage383pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage373pt_PT
oaire.citation.titleMathematical Proceedings of the Cambridge Philosophical Societypt_PT
oaire.citation.volume149pt_PT
oaire.fundingStreamFARH
oaire.fundingStreamPIDDAC
person.familyNameBessa
person.givenNameMário
person.identifierhttps://scholar.google.com/citations?user=088yCR4AAAAJ&hl=pt-PT
person.identifier.ciencia-idC21A-EEC0-A3EF
person.identifier.orcid0000-0002-1758-2225
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2dd300f3-9f00-49de-9333-78ec0511220e
relation.isAuthorOfPublication.latestForDiscovery2dd300f3-9f00-49de-9333-78ec0511220e
relation.isProjectOfPublication70c66b47-c078-45c2-aeb0-54e54cd1a24e
relation.isProjectOfPublicationfbcdd46e-e64d-4eeb-aa22-e6b0743815f5
relation.isProjectOfPublication.latestForDiscovery70c66b47-c078-45c2-aeb0-54e54cd1a24e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MPCPS.pdf
Size:
121.16 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: