Repository logo
 
Publication

A new R-function to estimate the PDF of the product of two uncorrelated normal variables

datacite.subject.sdg04:Educação de Qualidadept_PT
dc.contributor.authorSeijas-Macias, J. Antonio
dc.contributor.authorOliveira, Amilcar
dc.contributor.authorOliveira, Teresa
dc.date.accessioned2024-11-08T11:01:31Z
dc.date.available2024-11-08T11:01:31Z
dc.date.issued2023-08-14
dc.description.abstractThis paper analyses the implementation of a procedure using the software R to calculate the Probability Density Function (PDF) of the product of two uncorrelated Normally Distributed Random Variables. The problem of estimating the distribution of the product of two random variables has been solved for some particular cases, but there is no unique expression for all possible situations. In our study, we chose Rohatgi’s theorem as a basis for approximating the product of two uncorrelated Normally Distributed Random Variables. The numerical approximation of the product PDF was calculated using a function that we implemented in R. Several numerical examples show that the approximations obtained in R fit the theoretical values of the product distributions. The results obtained with our R function are very positive when we compare them with the Monte Carlo Simulation of the product of the two variables.pt_PT
dc.description.sponsorshipThis research was partially funded by FCT—Fundação para a Ciência e a Tecnologia under the project—UIBD/00006/2020 and this research was partially funded by FUAC—Fundación Univesidade da Coruña by special funds of the Cátedra de Internacionalización Luis Fernández Somoza.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSeijas-Macias, A.; Oliveira, A.; Oliveira, T.A. A New R-Function to Estimate the PDF of the Product of Two Uncorrelated Normal Variables. Mathematics 2023, 11, 3515. https://doi.org/10.3390/math11163515pt_PT
dc.identifier.doi10.3390/math11163515pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.2/16747
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/11/16/3515pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectProduct normal variablespt_PT
dc.subjectNormal distributionpt_PT
dc.subjectRohatgi’s theorempt_PT
dc.subjectNumerical integrationpt_PT
dc.titleA new R-function to estimate the PDF of the product of two uncorrelated normal variablespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue16pt_PT
oaire.citation.startPage3515pt_PT
oaire.citation.titleMathematicspt_PT
oaire.citation.volume11pt_PT
person.familyNameSeijas-Macias
person.familyNameOliveira
person.familyNameOliveira
person.givenNameJ. Antonio
person.givenNameAmilcar
person.givenNameTeresa Azinheira
person.identifier1155497
person.identifier.ciencia-id3717-BC82-53C2
person.identifier.ciencia-id7110-61B4-B87F
person.identifier.ciencia-id8814-A54B-12DE
person.identifier.orcid0000-0002-6056-3257
person.identifier.orcid0000-0001-5500-7742
person.identifier.orcid0000-0003-3283-9946
person.identifier.ridJ-3077-2019
person.identifier.scopus-author-id57194105655
person.identifier.scopus-author-id55675222550
person.identifier.scopus-author-id54403540300
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4c04d3df-9b7d-4a0c-b5c3-74b47a7fa0a2
relation.isAuthorOfPublication1c873476-22fd-4331-8286-ff5576ac3b0c
relation.isAuthorOfPublication82b3cd70-88cc-4d31-b4b0-4705f8496c67
relation.isAuthorOfPublication.latestForDiscovery82b3cd70-88cc-4d31-b4b0-4705f8496c67

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-11-03515-v2 (1).pdf
Size:
318.13 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: