Repository logo
 
Publication

Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis

dc.contributor.authorFinkelshtein, Dmitri L.
dc.contributor.authorKondratiev, Yuri G.
dc.contributor.authorLytvynov, Eugene
dc.contributor.authorOliveira, Maria João
dc.contributor.authorStreit, Ludwig
dc.date.accessioned2019-09-30T11:10:35Z
dc.date.available2019-09-30T11:10:35Z
dc.date.issued2019-11-01
dc.description.abstractFor certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fréchet topological space of entire functions of exponential order $\alpha$ and minimal type. In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFinkelshtein, Dmitri [et al.] - Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis. "Journal of Mathematical Analysis and Applications" [Em linha]. ISSN 0022-247X. Vol. 479, nº 1 (2019), p. 162-184pt_PT
dc.identifier.doi10.1016/j.jmaa.2019.06.021
dc.identifier.issn0022-247X
dc.identifier.urihttp://hdl.handle.net/10400.2/8550
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.subjectInfinite dimensional holomorphypt_PT
dc.subjectNuclear and co-nuclear spacespt_PT
dc.subjectPolynomials sequence of binomial typept_PT
dc.subjectSheffer operatorpt_PT
dc.subjectSheffer sequencept_PT
dc.subjectSpaces of entire functionspt_PT
dc.titleSheffer homeomorphisms of spaces of entire functions in infinite dimensional analysispt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage184pt_PT
oaire.citation.startPage162pt_PT
oaire.citation.titleJournal of Mathematical Analysis and Applicationspt_PT
person.familyNameOliveira
person.givenNameMaria João
person.identifier.ciencia-idDD1B-3964-2168
person.identifier.orcid0000-0002-4027-9849
person.identifier.scopus-author-id24473078000
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication73548978-4e91-4a20-bc3c-c62106297626
relation.isAuthorOfPublication.latestForDiscovery73548978-4e91-4a20-bc3c-c62106297626

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arxiv-2.pdf
Size:
464.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: