Repository logo
 
Publication

A nonlinear eigenvalue optimization problem: optimal potential functions

dc.contributor.authorAntunes, Pedro R. S.
dc.contributor.authorMohammadi, Seyyed Abbas
dc.contributor.authorVoss, Heinrich
dc.date.accessioned2018-02-26T10:26:49Z
dc.date.available2019-04-01T00:30:38Z
dc.date.issued2018-04
dc.description.abstractIn this paper we study the following optimal shape design problem: Given an open connected set Ω⊂RN and a positive number A∈(0,|Ω|), find a measurable subset D⊂Ω with |D|=A such that the minimal eigenvalue of −div(ζ(λ,x)∇u)+αχDu=λu in Ω, u=0 on ∂Ω, is as small as possible. This sort of nonlinear eigenvalue problems arises in the study of some quantum dots taking into account an electron effective mass. We establish the existence of a solution and we determine some qualitative aspects of the optimal configurations. For instance, we can get a nearly optimal set which is an approximation of the minimizer in ultra-high contrast regime. A numerical algorithm is proposed to obtain an approximate description of the optimizer.pt_PT
dc.description.sponsorshipThe research of the first author was partially supported by FCT, Portugal, through the program “Investigador FCT” with reference IF/00177/2013 and the scientific project PTDC/MAT-CAL/4334/2014.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doihttps://doi.org/10.1016/j.nonrwa.2017.09.003pt_PT
dc.identifier.issn1468-1218
dc.identifier.urihttp://hdl.handle.net/10400.2/7176
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.subjectNonlinear eigenvalue problempt_PT
dc.subjectShape optimizationpt_PT
dc.subjectUltra-high contrast regimept_PT
dc.subjectQuantum dotspt_PT
dc.titleA nonlinear eigenvalue optimization problem: optimal potential functionspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FMAT-CAL%2F4334%2F2014/PT
oaire.citation.endPage327pt_PT
oaire.citation.startPage307pt_PT
oaire.citation.titleNonlinear Analysis: Real World Applicationspt_PT
oaire.citation.volume40pt_PT
oaire.fundingStream3599-PPCDT
person.familyNameAntunes
person.givenNamePedro
person.identifier.ciencia-id6710-138C-A69D
person.identifier.orcid0000-0003-1969-1860
person.identifier.ridM-2406-2015
person.identifier.scopus-author-id55346859100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbef314d2-4a78-4fba-aecd-9f4e8e19e70c
relation.isAuthorOfPublication.latestForDiscoverybef314d2-4a78-4fba-aecd-9f4e8e19e70c
relation.isProjectOfPublication259186c3-0d02-4228-a8e8-aacad9f74b0e
relation.isProjectOfPublication.latestForDiscovery259186c3-0d02-4228-a8e8-aacad9f74b0e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A29.pdf
Size:
4.02 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.13 KB
Format:
Item-specific license agreed upon to submission
Description: