Repository logo
 
Publication

The largest subsemilattices of the endomorphism monoid of an independence algebra

authorProfile.id.cienciaIDBE11-F004-1168pt_PT
dc.contributor.authorAraújo, João
dc.contributor.authorBentz, Wolfram
dc.contributor.authorKonieczny, Janusz
dc.date.accessioned2015-03-24T09:47:02Z
dc.date.available2015-03-24T09:47:02Z
dc.date.issued2014
dc.description.abstractAn algebra A is said to be an independence algebra if it is a matroid algebra and every map α:X→A, defined on a basis X of A, can be extended to an endomorphism of A. These algebras are particularly well-behaved generalizations of vector spaces, and hence they naturally appear in several branches of mathematics such as model theory, group theory, and semigroup theory. It is well known that matroid algebras have a well-defined notion of dimension. Let A be any independence algebra of finite dimension n , with at least two elements. Denote by End(A) the monoid of endomorphisms of A. We prove that a largest subsemilattice of End(A) has either 2n−1 elements (if the clone of A does not contain any constant operations) or 2n elements (if the clone of A contains constant operations). As corollaries, we obtain formulas for the size of the largest subsemilattices of: some variants of the monoid of linear operators of a finite-dimensional vector space, the monoid of full transformations on a finite set X, the monoid of partial transformations on X, the monoid of endomorphisms of a free G-set with a finite set of free generators, among others. The paper ends with a relatively large number of problems that might attract attention of experts in linear algebra, ring theory, extremal combinatorics, group theory, semigroup theory, universal algebraic geometry, and universal algebra.por
dc.identifier.citationAraújo, João; Bentz, Wolfram; Konieczny, Janusz - The largest subsemilattices of the endomorphism monoid of an independence algebra. "Linear Algebra and its Applications" [Em linha]. ISSN 0024-3795. Vol. 458 (2014), p. 1-16por
dc.identifier.doi10.1016/j.laa.2014.05.041
dc.identifier.issn0024-3795
dc.identifier.urihttp://hdl.handle.net/10400.2/3804
dc.language.isoengpor
dc.peerreviewedyespor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0024379514003619por
dc.subjectIndependence algebrapor
dc.subjectSemilatticepor
dc.subjectMonoid of endomorphismspor
dc.subjectDimensionpor
dc.titleThe largest subsemilattices of the endomorphism monoid of an independence algebrapor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage16por
oaire.citation.startPage1por
oaire.citation.titleLinear Algebra and its Applicationspor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.familyNameBentz
person.givenNameJoão Jorge
person.givenNameWolfram
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.orcid0000-0001-6655-2172
person.identifier.orcid0000-0003-0002-1277
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication20420639-0e78-4226-a2e3-892cd2eaa7e8
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2014THELARGEST.pdf
Size:
592.47 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: