Repository logo
 
Publication

The commuting graph of the symmetric inverse semigroup

dc.contributor.authorAraújo, João
dc.contributor.authorBentz, Wolfram
dc.contributor.authorKonieczny, Janusz
dc.date.accessioned2015-03-24T17:21:14Z
dc.date.available2015-03-24T17:21:14Z
dc.date.issued2014
dc.description.abstractThe commuting graph of a finite non-commutative semigroup S, denoted G(S), is a simple graph whose vertices are the non-central elements of S and two distinct vertices x, y are adjacent if xy = yx. Let I(X) be the symmetric inverse semigroup of partial injective transformations on a finite set X. The semigroup I(X) has the symmetric group Sym(X) of permutations on X as its group of units. In 1989, Burns and Goldsmith determined the clique number of the commuting graph of Sym(X). In 2008, Iranmanesh and Jafarzadeh found an upper bound of the diameter of G(Sym(X)), and in 2011, Dol˘zan and Oblak claimed that this upper bound is in fact the exact value.The goal of this paper is to begin the study of the commuting graph of the symmetric inverse semigroup I(X). We calculate the clique number of G(I(X)), the diameters of the commuting graphs of the proper ideals of I(X), and the diameter of G(I(X)) when |X| is even or a power of an odd prime. We show that when |X| is odd and divisible by at least two primes, then the diameter of G(I(X)) is either 4 or 5. In the process, we obtain several results about semigroups, such as a description of all commutative subsemigroups of I(X) of maximum order, and analogous results for commutative inverse and commutative nilpotent subsemigroups of I(X). The paper closes with a number of problems for experts in combinatorics and in group or semigroup theory.por
dc.identifier.citationAraújo, João; Bentz, Wolfram; Konieczny, Janusz - The commuting graph of the symmetric inverse semigroup. "Israel Journal of Mathematics" [Em linha]. ISSN 0021-2172 (Print) 1565-8511 (Online). (2014), p. 1-29por
dc.identifier.issn0021-2172
dc.identifier.issn1565-8511
dc.identifier.urihttp://hdl.handle.net/10400.2/3813
dc.language.isoengpor
dc.peerreviewedyespor
dc.subjectCommuting graphs of semigroupspor
dc.subjectSymmetric inverse semigrouppor
dc.subjectCommutative semigroupspor
dc.subjectInverse semigroupspor
dc.subjectNilpotent semigroupspor
dc.subjectClique numberpor
dc.subjectDiameterpor
dc.titleThe commuting graph of the symmetric inverse semigrouppor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage29por
oaire.citation.startPage1por
oaire.citation.titleIsrael Journal of Mathematicspor
person.familyNameRibeiro Soares Gonçalves de Araújo
person.familyNameBentz
person.givenNameJoão Jorge
person.givenNameWolfram
person.identifier.ciencia-idEC1F-273A-9F24
person.identifier.ciencia-idBE11-F004-1168
person.identifier.orcid0000-0001-6655-2172
person.identifier.orcid0000-0003-0002-1277
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication1f7b349c-3251-480d-a3ac-e3cb4ef44f22
relation.isAuthorOfPublication20420639-0e78-4226-a2e3-892cd2eaa7e8
relation.isAuthorOfPublication.latestForDiscovery1f7b349c-3251-480d-a3ac-e3cb4ef44f22

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2014TheCOMMUTING.pdf
Size:
768.31 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: