Repository logo
 
Publication

Modeling non-life insurance price for risk without historical information

dc.contributor.authorAzevedo, Filipe Charters de
dc.contributor.authorOliveira, Teresa A.
dc.contributor.authorOliveira, Amilcar
dc.date.accessioned2021-05-11T14:50:48Z
dc.date.available2021-05-11T14:50:48Z
dc.date.issued2016-04
dc.description.abstractHow should an insurer price a risk for which there is no history? This work intends to show, step by step, which main mechanisms are needed to capture the tariff model of another insurance company minimizing the risk involved. The document generally deals with the price-making mechanisms in non-life insurance through the GLM regression models — Generalized Linear Model, more precisely the Poisson, Gamma and Tweedie models. Given the complexity of the application of these models in experimental design, it is studied a simpler way to characterize the rate, namely considering the Box–Cox transformation with SUR — Seemingly Unrelated Regression. An orthogonal experimental design to collect information is also presented as well as an application of these methods in the motor industry considering different companies.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.issn1645-6726
dc.identifier.urihttp://hdl.handle.net/10400.2/10718
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherINEpt_PT
dc.relation.publisherversionhttps://www.ine.pt/revstat/pdf/rs160205.pdfpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPricing (non-life insurance)pt_PT
dc.subjectGLMpt_PT
dc.subjectBox–Coxpt_PT
dc.subjectOptimal designspt_PT
dc.subjectSUR — Seemingly Unrelated Regressionpt_PT
dc.titleModeling non-life insurance price for risk without historical informationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00006%2F2013/PT
oaire.citation.endPage192pt_PT
oaire.citation.issue14(2)pt_PT
oaire.citation.startPage171pt_PT
oaire.citation.titleREVSTAT – Statistical Journalpt_PT
oaire.fundingStream5876
person.familyNameOliveira
person.familyNameOliveira
person.givenNameTeresa Azinheira
person.givenNameAmilcar
person.identifier1155497
person.identifier.ciencia-id8814-A54B-12DE
person.identifier.ciencia-id7110-61B4-B87F
person.identifier.orcid0000-0003-3283-9946
person.identifier.orcid0000-0001-5500-7742
person.identifier.ridJ-3077-2019
person.identifier.scopus-author-id54403540300
person.identifier.scopus-author-id55675222550
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication82b3cd70-88cc-4d31-b4b0-4705f8496c67
relation.isAuthorOfPublication1c873476-22fd-4331-8286-ff5576ac3b0c
relation.isAuthorOfPublication.latestForDiscovery1c873476-22fd-4331-8286-ff5576ac3b0c
relation.isProjectOfPublicationa45bdf98-2578-4a37-9c05-1a9fc1e2bbeb
relation.isProjectOfPublication.latestForDiscoverya45bdf98-2578-4a37-9c05-1a9fc1e2bbeb

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5. rs160205.pdf
Size:
628.15 KB
Format:
Adobe Portable Document Format