Matemática Aplicada e Modelação | Applied Mathematics and Modelling
Permanent URI for this community
Browse
Browsing Matemática Aplicada e Modelação | Applied Mathematics and Modelling by advisor "Mukherjee, Amitava"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Modelação de dados espaço-temporais da COVID-19 em Portugal com desagregação temporal: uma abordagem estatística e epidemiológicaPublication . Leal, Maria da Conceição Dias; Oliveira, Teresa; Oliveira, Amílcar; Mukherjee, AmitavaA monitorização estatística analisa dados recolhidos ao longo do tempo e/ou espaço, para detetar e quantificar alterações, anomalias ou tendências nos processos subjacentes. Esta tese desenvolve e aplica métodos estatísticos para monitorizar dados espaço-temporais, considerando as suas especificidades e desafios. Usando como caso prático a COVID-19 em concelhos de Portugal Continental, o trabalho visa compreender a dinâmica de disseminação de uma epidemia, apoiar a tomada de decisão em Saúde Pública e contribuir com metodologias inovadoras em estatística. A tese propõe três contributos principais: 1) desagregação temporal de dados, em que se obtém dados mais detalhados e confiáveis a partir de dados de diferentes fontes que os recolhem e tratam com critérios distintos, recorrendo a algoritmos que permitem infundir informação relevante do domínio; 2) modelação de dados, considerando efeitos espaciais, temporais e de interação 𝑒𝑠𝑝𝑎ç𝑜 × 𝑡𝑒𝑚𝑝𝑜, com recurso ao ajuste de modelos hierárquicos bayesianos aos dados observados e desagregados, para análise e deteção de padrões temporais e espaciais; e 3) análise e deteção de fatores de risco e avaliação do impacto de eventos públicos e de covariáveis meteorológicas na disseminação de uma epidemia/pandemia, usando modelos lineares generalizados, visualização e testes de hipóteses. A tese explora dois casos relevantes com dados de COVID-19 de concelhos de Portugal Continental, criando formas mais sólidas de análise e monitorização dos dados. A tese demonstra como a matemática e a epidemiologia se unem para enfrentar desafios da humanidade, como a pandemia COVID-19, avançando o conhecimento científico e melhorando as políticas públicas de saúde e outros processos.