Viscosity and Density Measurements on Compressed Liquid n-Tetradecane a)

Tânia V.M. Santos,1 Marta F.V. Pereira,1 Helena M.N.T. Avelino,1,2 Fernando J. P. Caetano,1,3 João M. N. A. Fareleira1

1) Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal
2) Instituto Superior de Engenharia de Lisboa, Portugal
3) Universidade Aberta, Lisboa, Portugal

a) Article submitted to Fluid Phase Equilibria in 23 June 2017. Accepted in 28 August 2017: https://doi.org/10.1016/j.fluid.2017.08.025
AIMS:

• **Long-term**: To develop a reference correlation for the viscosity of normal tetradecane (n-C\textsubscript{14}) at high pressures and in a wide range of temperatures.

• **Short-term** (present work):
 1. To measure the **viscosity** of n-C\textsubscript{14} in wide temperature and pressure ranges — special attention to \((T,p)\) ranges where viscosity data are scarce (or non-existent, v.g.: \(T<293\) K).
 2. To **correlate the present viscosity** data with density.
MOTIVATION

1. General economic importance of alkanes;

2. Increasing importance of paraffins (and their mixtures) for energy storage systems as PHASE CHANGE MATERIALS;

3. Lack of rigorous viscosity data for n-tetradecane, at low temperatures and moderately high pressures ($p<10$ MPa). Ranges that are relevant for the development of some sustainable processes.
SUMMARY OF THE PRESENT WORK

• New measurements of the **viscosity** of n-tetradecane (n-C_{14}) at moderately high pressures, using the **vibrating wire** technique.

• New measurements of the **density** of n-tetradecane using a model HP Anton Paar U-tube densimeter.

• Development of a **correlation** of viscosity with density, using a modified hard-spheres model.
Density

Experimental results obtained using an Anton Paar DMA HP model vibrating U-Tube instrument with model DMA 5000 as reading unit.

Measurements were performed along nine isotherms in the range \(283 \leq T \leq 373\) K and pressures from (0.1 to 70) MPa

The experimental data were correlated by a modified Tait equation, proposed by J.H. Dymond, R. Malhotra, The Tait equation: 100 years on, Int. J. Thermophys. 9 (1988) 941–951.

\[
\rho = \rho_0 \left\{1 - C \ln \left(\frac{D + p}{D + p_0} \right) \right\}^{-1}
\]

with \(\rho_0 = \sum_{i=0}^{2} b_i T^i \)
Deviations of the density of n-tetradecane (this work) from the correlation

\[\frac{\rho_{\text{exp}} - \rho_{\text{cal}}}{\rho_{\text{cal}}} \]

p / MPa

$283 \text{ K}; \bigstar 288 \text{ K}; \bigcirc 293 \text{ K}; \square 298 \text{ K}; \bullet 308 \text{ K}; \triangle 318 \text{ K}; \text{---} 338 \text{ K}; \diamondsuit 358 \text{ K}; \blacklozenge 373 \text{ K}$
Deviations of literature density data (after 1978) from the correlation of our results

Snyder and Winnick’s, 1970 data are not shown (0.8%<dev<1%)

Gouel; △ Valência et al.; ○ Kariznovi et al.; ◇ Gawronska et al.; □ Khasanshin et al.
Literature viscosity data for liquid n-C\textsubscript{14}

<table>
<thead>
<tr>
<th>Year</th>
<th>First author</th>
<th>Temperature range/K</th>
<th>Pressure range/MPa</th>
<th>NP</th>
<th>Method</th>
<th>Purity /%</th>
<th>Nominal uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Ducoulombier</td>
<td>293-373</td>
<td>0.1 - 100</td>
<td>24</td>
<td>falling body</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1989</td>
<td>Knapstad</td>
<td>293-423</td>
<td>0.1</td>
<td>10</td>
<td>Oscillating viscometer</td>
<td>99</td>
<td>(0.33-0.56) %</td>
</tr>
<tr>
<td>2001</td>
<td>Franjo</td>
<td>298.15</td>
<td>0.1</td>
<td>1</td>
<td>capillary</td>
<td>99</td>
<td>± 5 \times 10^{-4} mm\cdot s^{-1}</td>
</tr>
<tr>
<td>2003</td>
<td>Nayak</td>
<td>298-308</td>
<td>0.1</td>
<td>3</td>
<td>capillary</td>
<td>99</td>
<td>±0.001 mPa s</td>
</tr>
<tr>
<td>2007</td>
<td>Hernández-Galván</td>
<td>313-393</td>
<td>0.69 - 60</td>
<td>40</td>
<td>rolling-balla)</td>
<td>99</td>
<td>±2.0 %</td>
</tr>
<tr>
<td>2012</td>
<td>Mahajan</td>
<td>298.15</td>
<td>0.1</td>
<td>1</td>
<td>capillary</td>
<td>99</td>
<td>±0.003 mPa sc)</td>
</tr>
<tr>
<td>2013</td>
<td>Kariznovi</td>
<td>300-343</td>
<td>0.1-10</td>
<td>15</td>
<td>Cambridge Viscometerb)</td>
<td>99</td>
<td>5%</td>
</tr>
</tbody>
</table>

a) Kinematic Viscosity; b) Cambridge Viscometer Model SPC; c) repeatability; NA – not available
Literature viscosity data (η vs. p) for compressed liquid n-C_{14} (up to 100 MPa)

- Ducoulombier 1986
- Hernández-Galván 2007
- Kariznovi 2013

Uncertainty:
- Ducoulombier 1986: Uncertainty NA
- Hernández-Galván 2007: Uncertainty = 5%
- Kariznovi 2013: Uncertainty = 5%

Data range:
- η vs. p for compressed liquid n-C_{14} up to 100 MPa

Graph showing the relationship between viscosity (η) and pressure (p) for the specified conditions.
Literature viscosity (η vs. T) data for compressed liquid n-C_{14}
Literature viscosity data with specified uncertainty less than 5%

\((p>0.1\text{ MPa})\)
Viscosity:

New measurements of the viscosity of n-tetradecane along eight isotherms in the range $(283 \leq T \leq 358)$ K and pressures up to 70 MPa, have been performed using the vibrating wire technique in the forced mode of operation.
Vibrating wire sensor

1 - top washers;
2 - upper claw chucks;
3 - vibrating wire;
4 - rod spacers;
5 - bottom claw chucks;
6 - upper rod clamping;
7 - magnetic circuit;
8 - magnets;
9 - lower rod clamping,
10 - bottom washers

Raw data

Hydrodynamic Model

Viscosity
Updated view: Viscosity (η vs. T) for n-C_{14} ($p \geq 0.1$ MPa) with uncertainty less than 5%
Updated view: Viscosity (η vs. p) for n-C_{14} ($p \geq 0.1$ MPa) with uncertainty less than 5%
Correlation scheme: A modified hard-spheres model of transport properties of fluids for VISCOSITY

Heuristic development\(^1\) of the kinetic theory for dense hard-sphere fluids, applied to the van der Waals model of a liquid, proposed by Dymond.\(^2\)

\[
\eta^* = 6.035 \times 10^8 \left(\frac{1}{MRT} \right)^{1/2} \left(V_m \right)^{2/3} \eta
\]

\[
\eta^* = f \left(\frac{V_m}{V_0} \right) \quad V_0 = f(T)
\]

Viscosity Correlation
Smooth Hard-Spheres

\[V_0(T) \times 10^6 \left(\text{m}^3 \text{mol}^{-1} \right) = V_{0,\text{ref}} + t \left(T - T_{\text{ref}} \right) + m \left(T - T_{\text{ref}} \right)^2 \]

Viscosity Correlation
Smooth Hard-Spheres

\[\frac{1}{\eta^*} = \sum_{i=0}^{4} a_i \left(\frac{V_m}{V_0} \right)^i \]

\[\eta^* = \frac{1}{\sum_{i=0}^{4} a_i \left(\frac{V_m}{V_0} \right)^i} \]

Viscosity at \(T_{\text{ref}} \)

Viscosity Correlation
Smooth Hard-Spheres

\[V_0(T) \times 10^6 \left(\text{m}^3 \text{mol}^{-1} \right) = V_{0,\text{ref}} + t \left(T - T_{\text{ref}} \right) + m \left(T - T_{\text{ref}} \right)^2 \]

Viscosity Correlation
Smooth Hard-Spheres

\[\frac{1}{\eta^*} = \sum_{i=0}^{4} a_i \left(\frac{V_m}{V_0} \right)^i \]

Viscosity at \(T_{\text{ref}} \)

Viscosity Correlation
Smooth Hard-Spheres

\[V_0(T) \times 10^6 \left(\text{m}^3 \text{mol}^{-1} \right) = V_{0,\text{ref}} + t \left(T - T_{\text{ref}} \right) + m \left(T - T_{\text{ref}} \right)^2 \]

Viscosity Correlation
Smooth Hard-Spheres

\[\frac{1}{\eta^*} = \sum_{i=0}^{4} a_i \left(\frac{V_m}{V_0} \right)^i \]

Viscosity at \(T_{\text{ref}} \)

Viscosity Correlation
Smooth Hard-Spheres

\[V_0(T) \times 10^6 \left(\text{m}^3 \text{mol}^{-1} \right) = V_{0,\text{ref}} + t \left(T - T_{\text{ref}} \right) + m \left(T - T_{\text{ref}} \right)^2 \]

Viscosity Correlation
Smooth Hard-Spheres

\[\frac{1}{\eta^*} = \sum_{i=0}^{4} a_i \left(\frac{V_m}{V_0} \right)^i \]

Viscosity at \(T_{\text{ref}} \)
Deviations (\(\eta\ vs. \rho\)) for \(n-C_{14}\) (\(p \geq 0.1\) MPa) obtained in the present work with the vibrating-wire technique, from the present correlation scheme.

Correlations
\(\eta(T, \rho) \& \rho(T, \rho)\)

3-8 Sept 2017
21st ECTP, Graz, Austria
Deviations of \(n-C_{14} \) viscosity \textbf{literature data} at 0.1 MPa, from our correlation.
Deviation of the viscosity literature data for \(n-C_{14} \) from our correlation as a function of pressure.

\[
100\left(\frac{\eta_{\text{exp}} - \eta_{\text{cal}}}{\eta_{\text{cal}}}\right) / \eta_{\text{cal}}
\]

\(p \) / MPa

- Ducoulombier 1986
- Hernández-Gálvan 2007
- Kariznovi 2013
Conclusions:

- This work provides new viscosity measurements in ranges where literature data were scarce or totally absent (No literature data below 293 K even at 0.1 MPa!).

- New density measurements were also performed and used to develop a provisional viscosity correlation, which may be used to obtain $\eta = \eta(T,p)$ with low uncertainty in wide ranges of T and p.

- However, large inconsistency between literature results is observed, exceeding the nominal uncertainty of most of the available measurements, which hinders the possibility to develop reference correlations for the viscosity of n-tetradecane.

- A reference correlation for the viscosity of n-C_{14}, needs new independent measurements, using several experimental methods, covering the low temperature and intermediate pressure ranges (up to 10 MPa).
Acknowledgments:

This work was supported by the Strategic Project PEst-OE/QUI/UI0100/2013 funded by Fundação para a Ciência e a Tecnologia (FCT, Portugal).