Costa, Fernando Pestana da2010-05-142010-05-141996Costa, Fernando Pestana da - On the dynamic scaling behaviour of solutions to the discrete Smoluchowski equations. "Proceedings of the Edinburgh Mathematical Society" [Em linha]. ISSN 0013-0915 (Print)1464-3839 (Online). NÂș 39 (1996), p. 547-5590013-0915 (Print)1464-3839 (Online)http://hdl.handle.net/10400.2/1470In this paper we generalize recent results of Kreer and Penrose by showing that solutions to the discrete Smoluchowski equations $$\dot{c}_{j} = \sum_{k=1}^{j-1}c_{j-k}c_{k} - 2c_{j}\sum_{k=1}^{\infty}c_{k}, j = 1, 2, \ldots$$ with general exponentially decreasing initial data, with density $\rho,$ have the following asymptotic behaviour $$\lim_{j, t \rightarrow\infty, \xi = j/t fixed, j \in {\cal J}} t^{2}c_{j}(t) = \frac{q}{\rho}\, e^{-\xi/\rho},$$ where ${\cal J} = \{j: c_{j}(t)>0, t>0\}$ and $q =\gcd \{j: c_{j}(0)>0\}.$engSmoluchowski coagulation equationsSelf-similar solutionsOn the dynamic scaling behaviour of solutions to the discrete Smoluchowski equationsjournal article