KAWSAKI DYNAMICS IN THE CONTINUUM VIA GENERATING FUNCTIONALS EVOLUTION

D. L. FINKELShtein, YU. G. KONDRAtev, AND M. J. OLIVEIRA

To the memory of A.G. Kostyuchenko.

Abstract. We construct the time evolution of Kawasaki dynamics for a spatial infinite particle system in terms of generating functionals. This is carried out by an Ovsjannikov-type result in a scale of Banach spaces, which leads to a local (in time) solution. An application of this approach to Vlasov-type scaling in terms of generating functionals is considered as well.

1. INTRODUCTION

Originally, Bogoliubov generating functionals (GF for short) were introduced by N. N. Bogoliubov in [2] to define correlation functions for statistical mechanics systems. Apart from this specific application, and many others, GF are, by themselves, a subject of interest in infinite dimensional analysis. This is partially due to the fact that to a probability measure μ defined on the space Γ of locally finite configurations $\gamma \subset \mathbb{R}^d$ one may associate a GF

$$B_\mu(\theta) := \int_\Gamma d\mu(\gamma) \prod_{x \in \gamma} (1 + \theta(x)),$$

yielding an alternative method to study the stochastic dynamics of an infinite particle system in the continuum by exploiting the close relation between measures and GF [4, 9].

Existence and uniqueness results for the Kawasaki dynamics through GF arise naturally from Picard-type approximations and a method by A. G. Kostyuchenko and G. E. Shilov presented in [6, Appendix 2, A2.1] in a scale of Banach spaces (see e.g. [5, Theorem 2.5]). This method, originally presented for equations with coefficients time independent, has been extended to an abstract and general framework by T. Yamanaka in [12] and L. V. Ovsjannikov in [10] in the linear case, and many applications were exposed by F. Treves in [11]. As an aside, within an analytical framework outside of our setting, all these statements are very closely related to variants of the abstract Cauchy-Kovalevskaya theorem. However, all these abstract forms only yield a local solution, that is, a solution which is defined on a finite time interval. Moreover, starting with an initial condition from a certain Banach space, in general the solution evolves on larger Banach spaces.

As a particular application, this work concludes with the study of the Vlasov-type scaling proposed in [3] for general continuous particle systems and accomplished in [1] for the Kawasaki dynamics. The general scheme proposed in [3] for correlation functions yields a limiting hierarchy which possesses a chaos preservation property, namely, starting...
with a Poissonian (non-homogeneous) initial state this structural property is preserved during the time evolution. In Section 4 the same problem is formulated in terms of GF and its analysis is carried out by the general Ovsjannikov-type result in a scale of Banach spaces presented in [5, Theorem 4.3].

2. General framework

In this section we briefly recall the concepts and results of combinatorial harmonic analysis on configuration spaces and Bogoliubov generating functionals needed throughout this work (for a detailed explanation see [7, 9]).

2.1. Harmonic analysis on configuration spaces. Let \(\Gamma := \Gamma_{\mathbb{R}^d} \) be the configuration space over \(\mathbb{R}^d, \, d \in \mathbb{N} \),

\[
\Gamma := \{ \gamma \subset \mathbb{R}^d : |\gamma \cap \Lambda| < \infty \text{ for every compact } \Lambda \subset \mathbb{R}^d \},
\]

where \(|\cdot| \) denotes the cardinality of a set. We identify each \(\gamma \in \Gamma \) with the non-negative Radon measure \(\sum_{x \in \gamma} \delta_x \) on the Borel \(\sigma \)-algebra \(\mathcal{B}(\mathbb{R}^d) \), where \(\delta_x \) is the Dirac measure with mass at \(x \), which allows to endow \(\Gamma \) with the vague topology and the corresponding Borel \(\sigma \)-algebra \(\mathcal{B}(\Gamma) \).

For any \(n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \) let

\[
\Gamma^{(n)} := \{ \gamma \in \Gamma : |\gamma| = n \}, \quad n \in \mathbb{N}, \quad \Gamma^{(0)} := \{ \emptyset \}.
\]

Clearly, each \(\Gamma^{(n)} \), \(n \in \mathbb{N} \), can be identify with the symmetrization of the set \(\{ (x_1, \ldots, x_n) \in (\mathbb{R}^d)^n : x_i \neq x_j \text{ if } i \neq j \} \), which induces a natural (metrizable) topology on \(\Gamma^{(n)} \) and the corresponding Borel \(\sigma \)-algebra \(\mathcal{B}(\Gamma^{(n)}) \). In particular, for the Lebesgue product measure \((dx)^\otimes n \) fixed on \((\mathbb{R}^d)^n \), this identification yields a measure \(m^{(n)} \) on \((\Gamma^{(n)}, \mathcal{B}(\Gamma^{(n)})) \).

For \(n = 0 \) we set \(m^{(0)}(\{ \emptyset \}) := 1 \). This leads to the definition of the space of finite configurations

\[
\Gamma_0 := \bigcup_{n=0}^{\infty} \Gamma^{(n)}
\]

endowed with the topology of disjoint union of topological spaces and the corresponding Borel \(\sigma \)-algebra \(\mathcal{B}(\Gamma_0) \), and to the so-called Lebesgue-Poisson measure on \((\Gamma_0, \mathcal{B}(\Gamma_0)) \),

\[
\lambda := \lambda_{dx} := \sum_{n=0}^{\infty} \frac{1}{n!} m^{(n)}.
\]

Let \(\mathcal{B}_c(\mathbb{R}^d) \) be the set of all bounded Borel sets in \(\mathbb{R}^d \) and, for each \(\Lambda \in \mathcal{B}_c(\mathbb{R}^d) \), let \(\Gamma_{\Lambda} := \{ \eta \in \Gamma : \eta \subset \Lambda \} \). Evidently \(\Gamma_{\Lambda} = \bigcup_{n=0}^{\infty} \Gamma_{\Lambda}^{(n)} \), where \(\Gamma_{\Lambda}^{(n)} := \Gamma_{\Lambda} \cap \Gamma^{(n)} \), \(n \in \mathbb{N}_0 \).

Given a complex-valued \(\mathcal{B}(\Gamma_0) \)-measurable function \(G \) such that \(G|_{\Gamma_{\Lambda}} \equiv 0 \) for some \(\Lambda \in \mathcal{B}_c(\mathbb{R}^d) \), the \(K \)-transform of \(G \) is a mapping \(KG : \Gamma \to \mathbb{C} \) defined at each \(\gamma \in \Gamma \) by

\[
(KG)(\gamma) := \sum_{\eta \subset \gamma, |\eta| < \infty} G(\eta).
\]

It has been shown in [7] that the \(K \)-transform is a linear and invertible mapping.

Let \(\mathcal{M}_{\text{fin}}(\Gamma) \) be the set of all probability measures \(\mu \) on \((\Gamma, \mathcal{B}(\Gamma)) \) with finite local moments of all orders, i.e.,

\[
\int_{\Gamma} d\mu(\gamma) |\gamma \cap \Lambda|^n < \infty \text{ for all } n \in \mathbb{N} \text{ and all } \Lambda \in \mathcal{B}_c(\mathbb{R}^d),
\]

and let \(B_{\text{fin}}(\Gamma_0) \) be the set of all complex-valued bounded \(\mathcal{B}(\Gamma_0) \)-measurable functions with bounded support, i.e., \(G|_{\Gamma_0 \setminus (\bigcup_{n=0}^{\infty} \Gamma_{\Lambda}^{(n)})} \equiv 0 \) for some \(N \in \mathbb{N}_0, \Lambda \in \mathcal{B}_c(\mathbb{R}^d) \). Given
a $\mu \in \mathcal{M}_1^1(\Gamma)$, the so-called correlation measure ρ_μ corresponding to μ is a measure on $(\Gamma_0, \mathcal{B}(\Gamma_0))$ defined for all $G \in B_{ba}(\Gamma_0)$ by

$$
(2.3) \quad \int_{\Gamma_0} d\rho_\mu(\eta) G(\eta) = \int_{\Gamma} d\mu(\gamma) (KG)(\gamma).
$$

This definition implies, in particular, that $B_{ba}(\Gamma_0) \subset L^1(\Gamma_0, \rho_\mu)$. Furthermore, still by (2.3), on $B_{ba}(\Gamma_0)$ the inequality $\|KG\|_{L^1(\Gamma, \mu)} \leq \|G\|_{L^1(\Gamma_0, \rho_\mu)}$ holds, allowing an extension of the K-transform to a bounded operator $K : L^1(\Gamma_0, \rho_\mu) \to L^1(\Gamma, \mu)$ in such a way that equality (2.3) still holds for any $G \in L^1(\Gamma_0, \rho_\mu)$. For the extended operator the explicit form (2.2) still holds, now μ-a.e. In particular, for coherent states $e_\lambda(f)$ of complex-valued $B(\mathbb{R}^d)$-measurable functions f,

$$(2.4) \quad e_\lambda(f, \eta) := \prod_{x \in \gamma} f(x), \quad \eta \in \Gamma_0 \setminus \{\emptyset\}, \quad e_\lambda(f, \emptyset) := 1.$$

Additionally, if f has compact support we have

$$(2.5) \quad (Ke_\lambda(f))(\gamma) = \prod_{x \in \gamma} (1 + f(x))$$

for all $\gamma \in \Gamma$, while for functions f such that $e_\lambda(f) \in L^1(\Gamma_0, \rho_\mu)$ equality (2.5) holds, but only for μ-a.e. $\gamma \in \Gamma$. Concerning the Lebesgue-Poisson measure (2.1), we observe that $e_\lambda(f) \in L^p(\Gamma_0, \lambda)$ whenever $f \in L^p := L^p(\mathbb{R}^d, dx)$ for some $p \geq 1$. In this case, $\|e_\lambda(f)\|_{L^p} = \exp(\|f\|_{L^p})$. In particular, for $p = 1$, in addition we have

$$
\int_{\Gamma_0} d\lambda(\eta) e_\lambda(f, \eta) = \exp \left(\int_{\mathbb{R}^d} dx f(x) \right)
$$

for all $f \in L^1$. For more details see [8].

2.2. Bogoliubov generating functionals

Given a probability measure μ on $(\Gamma, \mathcal{B}(\Gamma))$ the so-called Bogoliubov generating functional (GF for short) B_μ corresponding to μ is the functional defined at each $B(\mathbb{R}^d)$-measurable function θ by

$$
(2.6) \quad B_\mu(\theta) := \int_{\Gamma} d\mu(\gamma) \prod_{x \in \gamma} (1 + \theta(x)),
$$

provided the right-hand side exists. It is clear from (2.6) that the domain of a GF B_μ depends on the underlying measure μ and, conversely, the domain of B_μ reflects special properties over the measure μ. Throughout this work we will consider GF defined on the whole complex L^1 space. This implies, in particular, that the underlying measure μ has finite local exponential moments, i.e.,

$$
\int_{\Gamma} d\mu(\gamma) e^{\alpha|\gamma \Lambda|} < \infty \quad \text{for all} \quad \alpha > 0 \quad \text{and all} \quad \Lambda \in B_\gamma(\mathbb{R}^d)
$$

and thus $\mu \in \mathcal{M}_1^1(\Gamma)$. According to the previous subsection, this implies that to such a measure μ one may associate the correlation measure ρ_μ, which leads to a description of the functional B_μ in terms of either the measure ρ_μ

$$
B_\mu(\theta) = \int_{\Gamma} d\mu(\gamma) (Ke_\lambda(\theta))(\gamma) = \int_{\Gamma_0} d\rho_\mu(\eta) e_\lambda(\theta, \eta),
$$

or the so-called correlation function $k_\mu := \frac{d\rho_\mu}{d\alpha}$ corresponding to the measure μ, if ρ_μ is absolutely continuous with respect to the Lebesgue–Poisson measure λ

$$
(2.7) \quad B_\mu(\theta) = \int_{\Gamma_0} d\lambda(\eta) e_\lambda(\theta, \eta) k_\mu(\eta).
$$

1Throughout this work all L^p-spaces, $p \geq 1$, consist of complex-valued functions.
Throughout this work we will assume, in addition, that GF are entire on the L^1 space [9], which is a natural environment, namely, to recover the notion of correlation function. For a generic entire functional B on L^1, this assumption implies that B has a representation in terms of its Taylor expansion

$$B(\theta_0 + z\theta) = \sum_{n=0}^{\infty} \frac{z^n}{n!} d^n B(\theta_0; \theta, \ldots, \theta), \quad z \in \mathbb{C}, \quad \theta \in L^1,$$

being each differential $d^n B(\theta_0; \cdot)$, $n \in \mathbb{N}$, $\theta_0 \in L^1$ defined by a symmetric kernel

$$\delta^n B(\theta_0; \cdot) \in L^\infty(\mathbb{R}^d) := L^\infty((\mathbb{R}^d)^n, (dx)^\otimes n),$$

called the variational derivative of n-th order of B at the point θ_0. That is,

$$d^n B(\theta_0; \theta_1, \ldots, \theta_n) := \frac{\partial^n}{\partial z_1 \cdots \partial z_n} B\left(\theta_0 + \sum_{i=1}^{n} z_i \theta_i\right) \bigg|_{z_1=\cdots=z_n=0}$$

(2.8)

$$= : \int_{(\mathbb{R}^d)^n} dx_1 \cdots dx_n \delta^n B(\theta_0; x_1, \ldots, x_n) \prod_{i=1}^{n} \theta_i(x_i)$$

for all $\theta_1, \ldots, \theta_n \in L^1$. Moreover, the operator norm of the bounded n-linear functional $d^n B(\theta_0; \cdot)$ is equal to $\|\delta^n B(\theta_0; \cdot)\|_{L^\infty(\mathbb{R}^d)}$ and for all $r > 0$ one has

$$\|\delta B(\theta_0; \cdot)\|_{L^\infty(\mathbb{R}^d)} \leq \frac{1}{r} \sup_{\|\theta\|_{L^1} \leq r} |B(\theta_0 + \theta')|$$

(2.9)

and, for $n \geq 2$,

$$\|\delta^n B(\theta_0; \cdot)\|_{L^\infty(\mathbb{R}^d)} \leq n! \left(\frac{e}{r}\right)^n \sup_{\|\theta\|_{L^1} \leq r} |B(\theta_0 + \theta')|.$$

(2.10)

In particular, if B is an entire GF B_μ on L^1 then, in terms of the underlying measure μ, the entireness property of B_μ implies that the correlation measure ρ_μ is absolutely continuous with respect to the Lebesgue-Poisson measure λ and the Radon-Nykodim derivative $k_\mu = \frac{d\rho_\mu}{d\lambda}$ is given by

$$k_\mu(\eta) = \delta[\eta] B_\mu(0; \eta) \quad \text{for } \lambda\text{-a.a. } \eta \in \Gamma_0.$$

In what follows, for each $\alpha > 0$, we consider the Banach space \mathcal{E}_α of all entire functionals B on L^1 such that

$$\|B\|_{\alpha} := \sup_{\theta \in L^1} \left(|B(\theta)| e^{-\frac{\beta}{2}\|\theta\|_{L^1}} \right) < \infty,$$

see [9]. This class of Banach spaces has the particularity that, for each $\alpha_0 > 0$, the family $\{\mathcal{E}_\alpha : 0 < \alpha \leq \alpha_0\}$ is a scale of Banach spaces, that is,

$$\mathcal{E}_{\alpha'} \subseteq \mathcal{E}_{\alpha}, \quad \|\cdot\|_{\alpha'} \leq \|\cdot\|_{\alpha}$$

for any pair α', α'' such that $0 < \alpha' < \alpha'' \leq \alpha_0$.

3. The Kawasaki dynamics

The Kawasaki dynamics is an example of a hopping particle model where, in this case, particles randomly hop over the space \mathbb{R}^d according to a rate depending on the interaction between particles. More precisely, let $a : \mathbb{R}^d \to [0, +\infty)$ be an even and integrable function and let $\phi : \mathbb{R}^d \to [0, +\infty]$ be a pair potential, that is, a $B(\mathbb{R}^d)$-measurable function such that $\phi(-x) = \phi(x) \in \mathbb{R}$ for all $x \in \mathbb{R}^d \setminus \{0\}$, which we will assume to be integrable. A particle located at a site x in a given configuration $\gamma \in \Gamma$
hops to a site \(y \) according to a rate given by \(a(x - y) \exp(-E(y, \gamma)) \), where \(E(y, \gamma) \) is a relative energy of interaction between the site \(y \) and the configuration \(\gamma \) defined by
\[
E(y, \gamma) := \sum_{x \in \gamma} \phi(x - y) \in [0, +\infty].
\]
Informally, the behavior of such an infinite particle system is described by
\[
(LF)(\gamma) = \sum_{x \in \gamma} \int_{\mathbb{R}^d} dy \ a(x - y) e^{-E(y, \gamma)} \left(F(\gamma \setminus \{x\} \cup \{y\}) - F(\gamma) \right).
\]
Given an infinite particle system, as the Kawasaki dynamics, its time evolution in terms of states is informally given by the so-called Fokker-Planck equation,
\[
\frac{d\mu_t}{dt} = L^* \mu_t, \quad \mu_t|_{t=0} = \mu_0,
\]
where \(L^* \) is the dual operator of \(L \). Technically, the use of definition (2.3) allows an alternative approach to the study of (3.2) through the corresponding correlation functions \(k_t := k_{\mu_t}, t \geq 0 \), provided they exist. This leads to the Cauchy problem
\[
\frac{\partial}{\partial t} k_t = L^*k_t, \quad k_t|_{t=0} = k_0,
\]
where \(k_0 \) is the correlation function corresponding to the initial distribution \(\mu_0 \) and \(L^* \) is the dual operator of \(\hat{L} := K^{-1}LK \) in the sense
\[
\int_{\Gamma_0} d\lambda(\eta) (\hat{L}G(\eta))k(\eta) = \int_{\Gamma_0} d\lambda(\eta) G(\eta)(\hat{L}^*k)(\eta).
\]
Through the representation (2.7), this gives us a way to express the dynamics also in terms of the GF \(B_t \) corresponding to \(\mu_t \), i.e., informally,
\[
\frac{\partial}{\partial t} B_t(\theta) = \int_{\Gamma_0} d\lambda(\eta) e_{\lambda}(\theta, \eta) \left(\frac{\partial}{\partial t} k_t(\eta) \right) = \int_{\Gamma_0} d\lambda(\eta) e_{\lambda}(\theta, \eta)(\hat{L}^*k_t)(\eta)
\]
\[
= \int_{\Gamma_0} d\lambda(\eta) (\hat{L}e_{\lambda}(\theta))(\eta)k_t(\eta) := (\hat{L}B_t)(\theta).
\]
This leads to the time evolution equation
\[
\frac{\partial B_t}{\partial t} = \hat{L}B_t,
\]
where, in the case of the Kawasaki dynamics, \(\hat{L} \) is given cf. [4] by
\[
(\hat{L}B)(\theta)
\]
\[
= \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy a(x - y)e^{-\phi(x - y)}(\theta(y) - \theta(x))\delta B(\theta e^{-\phi(y - \cdot)} + e^{-\phi(y - \cdot)} - 1; x).
\]

Theorem 3.1. Given an \(\alpha_0 > 0 \), let \(B_0 \in \mathcal{E}_{\alpha_0} \). For each \(\alpha \in (0, \alpha_0) \) there is a \(T > 0 \) (which depends on \(\alpha, \alpha_0 \)) such that there is a unique solution \(B_t, t \in [0, T), \) to the initial value problem (3.4), (3.5), \(B_t|_{t=0} = B_0 \) in the space \(\mathcal{E}_\alpha \).

This theorem follows as a particular application of an abstract Ovsjannikov-type result in a scale of Banach spaces which can be found e.g. in [5, Theorem 2.5], and the following estimate of norms.

Proposition 3.2. Let \(0 < \alpha < \alpha_0 \) be given. If \(B \in \mathcal{E}_{\alpha''} \) for some \(\alpha'' \in (\alpha, \alpha_0) \), then \(\hat{L}B \in \mathcal{E}_{\alpha'} \) for all \(\alpha \leq \alpha' < \alpha'' \), and we have
\[
\|\hat{L}B\|_{\alpha'} \leq 2e^{\frac{\alpha_1 \alpha_0}{\alpha}}\|a\|_{L^1} \alpha_0^{\frac{\alpha}{\alpha'' - \alpha'}}\|B\|_{\alpha''}.
\]
To prove this result as well as other forthcoming ones the next lemma shows to be useful.

Lemma 3.3. Let \(\varphi, \psi : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} \) be such that, for a.a. \(y \in \mathbb{R}^d \), \(\varphi(y, \cdot) \in L^\infty := L^\infty(\mathbb{R}^d), \psi(y, \cdot) \in L^1 \) and \(\|\varphi(y, \cdot)\|_{L^\infty} \leq c_0, \|\psi(y, \cdot)\|_{L^1} \leq c_1 \) for some constants \(c_0, c_1 > 0 \) independent of \(y \). For each \(\alpha > 0 \) and all \(B \in \mathcal{E}_\alpha \) let

\[
(L_0B)(\theta) := \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy a(x-y)e^{-k\phi(x-y)}(\theta(y) - \theta(x))\delta B(\varphi(y, \cdot)\theta + \psi(y, \cdot); x),
\]

\(\theta \in L^1 \). Here \(a \) and \(\phi \) are defined as before and \(k \geq 0 \) is a constant. Then, for all \(\alpha' > 0 \) such that \(c_0\alpha' < \alpha \), we have \(L_0B \in \mathcal{E}_{\alpha'} \) and

\[
\|L_0B\|_{\alpha'} \leq 2e^{\frac{c_1}{\alpha}}\|a\|_{L^1} \frac{\alpha'}{\alpha - c_0\alpha'} \|B\|_{\alpha}.
\]

Proof. First we observe that from the considerations done in Subsection 2.2 it follows that \(L_0B \) is an entire functional on \(L^1 \) and, in addition, that for all \(r > 0, \theta \in L^1 \), and a.a. \(x, y \in \mathbb{R}^d \),

\[
|\delta B(\varphi(y, \cdot)\theta + \psi(y, \cdot); x)| \leq \|\delta B(\varphi(y, \cdot)\theta + \psi(y, \cdot); \cdot)\|_{L^\infty} \leq \frac{1}{r} \sup_{\|\theta\|_{L^1} \leq r} |B(\varphi(y, \cdot)\theta + \psi(y, \cdot) + \theta_0)|,
\]

where, for all \(\theta_0 \in L^1 \) such that \(\|\theta_0\|_{L^1} \leq r \),

\[
|B(\varphi(y, \cdot)\theta + \psi(y, \cdot) + \theta_0)| \leq \|B\|_{\alpha} e^{\frac{\|\varphi(y, \cdot)\|_{L^\infty} + \|\psi(y, \cdot)\|_{L^1}}{\alpha}} \leq \|B\|_{\alpha} e^{\frac{c_0\|\theta\|_{L^1} + c_1 + r}{\alpha}}.
\]

As a result, due to the positiveness of \(\phi \) and to the fact that \(a \) is an even function, for all \(\theta \in L^1 \) one has

\[
\|L_0B\|_{\alpha} \leq \frac{1}{r} e^{\frac{c_0\|\theta\|_{L^1} + c_1 + r}{\alpha}} \|B\|_{\alpha} \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy a(x-y)e^{-k\phi(x-y)}|\theta(y) - \theta(x)| \leq \frac{2}{r} e^{\frac{c_1 + r}{\alpha}} \|a\|_{L^1} \|\theta\|_{L^1} e^{\frac{c_0\|\theta\|_{L^1}}{\alpha}} \|B\|_{\alpha}.
\]

Thus,

\[
\|L_0B\|_{\alpha'} = \sup_{\theta \in L^1} \left(e^{-\frac{1}{\alpha'}} \|\theta\|_{L^1} \right) \left(|L_0B(\theta)| \right) \leq \frac{2}{r} e^{\frac{c_1 + r}{\alpha}} \|a\|_{L^1} \|\theta\|_{L^1} \sup_{\theta \in L^1} \left(e^{-\left(\frac{1}{\alpha'} - \frac{c_0}{\alpha}\right)} \|\theta\|_{L^1} \right) \|B\|_{\alpha},
\]

where the supremum is finite provided \(\frac{1}{\alpha'} - \frac{c_0}{\alpha} > 0 \). In such a situation, the use of the inequality \(xe^{-mx} \leq \frac{1}{e^m} \), \(x \geq 0, m > 0 \) leads for each \(r > 0 \) to

\[
\|L_0B\|_{\alpha'} \leq \frac{2}{r} \|a\|_{L^1} \|B\|_{\alpha} e^{\frac{c_1 + r}{\alpha}} \frac{\alpha'}{\alpha - c_0\alpha'} \|B\|_{\alpha}.
\]

The required estimate of norms follows by minimizing the expression \(\frac{1}{2} e^{\frac{c_1 + r}{\alpha}} \) in the parameter \(r \), that is, \(r = \alpha \).

Proof of Proposition 3.2. In Lemma 3.3 replace \(\varphi \) by \(e^{-\phi} \) and \(\psi \) by \(e^{-\phi} - 1 \), and consider \(k = 1 \). Due to the positiveness and integrability properties of \(\phi \) one has \(e^{-\phi} \leq 1 \) and \(|e^{-\phi} - 1| = 1 - e^{-\phi} \leq \phi \in L^1 \), ensuring the conditions to apply Lemma 3.3.

Remark 3.4. Concerning the initial conditions considered in Theorem 3.1, observe that, in particular, \(B_0 \) can be an entire GF \(B_{\mu_0} \) on \(L^1 \) such that, for some constants \(\alpha_0, C > 0 \),

\[
|B_{\mu_0}(\theta)| \leq C \exp\left(\frac{\|\theta\|_{L^1}}{\alpha_0}\right)
\]

for all \(\theta \in L^1 \). In such a situation an additional analysis is need in order to guarantee that for each \(t \) the local solution \(B_t \) given by Theorem 3.1 is a GF (corresponding to some measure). For more details see e.g. [5, 9] and references therein.
4. Vlasov scaling

We proceed to investigate the Vlasov-type scaling proposed in [3] for generic continuous particle systems and accomplished in [1] for the Kawasaki dynamics. As explained in both references, we start with a rescaling of an initial correlation function \(k_0 \), denoted by \(k_0^{(c)} \), \(c > 0 \), which has a singularity with respect to \(c \) of the type \(k_0^{(c)}(\eta) \sim c^{-\lvert\eta\rvert}r_0(\eta) \), \(\eta \in \Gamma_0 \), being \(r_0 \) a function independent of \(c \). The aim is to construct a scaling of the operator \(L \) defined in (3.1), \(L_\varepsilon \), \(\varepsilon > 0 \), in such a way that the following two conditions are fulfilled. The first one is that under the scaling \(L \mapsto L_\varepsilon \) the solution \(k_t^{(c)} \), \(t \geq 0 \), to

\[
\frac{\partial}{\partial t} k_t^{(c)} = \hat{L}_\varepsilon k_t^{(c)}, \quad k_t^{(c)} \big|_{t=0} = k_0^{(c)}
\]

preserves the order of the singularity with respect to \(c \), that is, \(k_t^{(c)}(\eta) \sim c^{-\lvert\eta\rvert}r_t(\eta) \), \(\eta \in \Gamma_0 \). The second condition is that the dynamics \(r_0 \mapsto r_t \) preserves the Lebesgue-Poisson exponents, that is, if \(r_0 \) is of the form \(r_0 = e_\lambda(\rho_0) \), then each \(r_t \), \(t > 0 \), is of the same type, i.e., \(r_t = e_\lambda(\rho_t) \), where \(\rho_t \) is a solution to a non-linear equation (called a Vlasov-type equation).

The previous scheme was accomplished in [1] through the scale transformation \(\phi \mapsto \varepsilon \phi \) of the operator \(L \), that is,

\[
(\varepsilon L_\varepsilon F)(\gamma) := \sum_{y \in \gamma} \int_{\mathbb{R}^d} dy a(x - y)e^{-\varepsilon E(y, \gamma)} (F(\gamma \setminus \{x\} \cup \{y\}) - F(\gamma)).
\]

As shown in [3, Example 12], [1], the corresponding Vlasov-type equation is given by

\[
\frac{\partial}{\partial t} \rho_t(x) = (\rho_t \ast a)(x)e^{-(\rho_t \ast \phi)(x) - \rho_t(x)(a \ast e^{-(\rho_t \ast \phi)})(x)}, \quad x \in \mathbb{R}^d,
\]

where \(\ast \) denotes the usual convolution of functions. Existence of classical solutions \(0 \leq \rho_t \leq L_\infty \) to (4.1) has been discussed in [1]. Therefore, it is natural to consider the same scaling, but in GF.

To proceed towards GF, we consider \(k_t^{(c)} \) defined as before and \(k_{t, \text{ren}}^{(c)}(\eta) := \varepsilon^{|\eta|} k_t^{(c)}(\eta) \). In terms of GF, these yield

\[
B_t^{(c)}(\theta) := \int_{\Gamma_0} d\lambda(\eta)e_\lambda(\theta, \eta)k_t^{(c)}(\eta)
\]

and

\[
B_{t, \text{ren}}^{(c)}(\theta) := \int_{\Gamma_0} d\lambda(\eta)e_\lambda(\theta, \eta)k_{t, \text{ren}}^{(c)}(\eta) = \int_{\Gamma_0} d\lambda(\eta)e_\lambda(\varepsilon \theta, \eta)k_t^{(c)}(\eta) = B_t^{(c)}(\varepsilon \theta),
\]

leading, as in (3.3), to the initial value problem

\[
\frac{\partial}{\partial t} B_{t, \text{ren}}^{(c)} = \hat{L}_{\text{c, ren}} B_{t, \text{ren}}^{(c)}, \quad B_{t, \text{ren}}^{(c)} \big|_{t=0} = B_0^{(c)}.
\]

Proposition 4.1. For all \(\varepsilon > 0 \) and all \(\theta \in L^1 \), we have

\[
(\hat{L}_{\text{c, ren}} B)(\theta) = \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy a(x - y)e^{-(\varepsilon \phi(x - y))}(\theta(y) - \theta(x))
\]

\[
\times \delta B \left(\theta e^{-\varepsilon \phi(y - \cdot)} + \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon}; x \right).
\]

Proof. Since

\[
(\hat{L}_{\text{c, ren}} B)(\theta) = \int_{\Gamma_0} d\lambda(\eta) (\hat{L}_{\text{c, ren}} e_\lambda(\theta))(\eta) k(\eta),
\]
first we have to calculate \((\hat{L}_{\varepsilon,\text{ren}}e_{\lambda}(\theta))(\eta) := e^{-|\eta|/\varepsilon}\hat{L}_{\varepsilon}(e_{\lambda}(\varepsilon\theta, \eta)), \hat{L}_{\varepsilon} = K^{-1}L_{\varepsilon}K\) cf. [3].

Similar calculations done in [4, Subsection 4.2.1] show

\[
\int_{\Gamma_0} d\lambda(\eta) k(\eta) \sum_{x \in \eta} \int_{\mathbb{R}^d} dy \, a(x-y) e^{-\varepsilon\phi(x-y)} (\theta(y) - \theta(x))
\times e_{\lambda} \left(\theta e^{-\varepsilon\phi(y-\cdot)} + \frac{e^{-\varepsilon\phi(y-\cdot)} - 1}{\varepsilon}, \eta \setminus \{x\} \right),
\]

and thus, using the relation between variational derivatives derived in [9, Proposition 11], one finds

\[
(\hat{L}_{\varepsilon,\text{ren}}B)(\theta) = \int_{\Gamma_0} d\lambda(\eta) k(\eta) \sum_{x \in \eta} \int_{\mathbb{R}^d} dy \, a(x-y) e^{-\varepsilon\phi(x-y)} (\theta(y) - \theta(x))
\times e_{\lambda} \left(\theta e^{-\varepsilon\phi(y-\cdot)} + \frac{e^{-\varepsilon\phi(y-\cdot)} - 1}{\varepsilon}, \eta \setminus \{x\} \right) = \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy \, a(x-y) e^{-\varepsilon\phi(x-y)} (\theta(y) - \theta(x))
\times \int_{\Gamma_0} d\lambda(\eta) k(\eta \cup \{x\}) e_{\lambda} \left(\theta e^{-\varepsilon\phi(y-\cdot)} + \frac{e^{-\varepsilon\phi(y-\cdot)} - 1}{\varepsilon}, \eta \right) = \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy \, a(x-y) e^{-\varepsilon\phi(x-y)} (\theta(y) - \theta(x))
\times \delta B \left(\theta e^{-\varepsilon\phi(y-\cdot)} + \frac{e^{-\varepsilon\phi(y-\cdot)} - 1}{\varepsilon}; x \right). \quad \square
\]

Proposition 4.2. (i) If \(B \in \mathcal{E}_\alpha\) for some \(\alpha > 0\), then, for all \(\theta \in L^1\), \((\hat{L}_{\varepsilon,\text{ren}}B)(\theta)\) converges as \(\varepsilon\) tends to zero to

\[
(\hat{L}_{V}B)(\theta) := \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy \, a(x-y) (\theta(y) - \theta(x))\delta B(\theta - \phi(y-\cdot); x).
\]

(ii) Let \(\alpha_0 > \alpha > 0\) be given. If \(B \in \mathcal{E}_{\alpha''}\) for some \(\alpha'' \in (\alpha, \alpha_0]\), then \(\{\hat{L}_{\varepsilon,\text{ren}}B, \hat{L}_V B\} \subset \mathcal{E}_{\alpha'}\) for all \(\alpha \leq \alpha' < \alpha''\), and we have

\[
\|\hat{L}_B \|_{\alpha'} \leq 2\|a\|_{L^1} \frac{\alpha_0}{(\alpha'' - \alpha')} e^{\|\phi\|_{\alpha''}/2^1} \|B\|_{\alpha''},
\]

where \(\hat{L}_B = \hat{L}_{\varepsilon,\text{ren}}\) or \(\hat{L}_B = \hat{L}_V\).

Proof. (i) To prove this result we first analyze the pointwise convergence of the variational derivative (4.3) appearing in \(\hat{L}_{\varepsilon,\text{ren}}\). For this purpose we will use the relation between variational derivatives derived in [9, Proposition 11], i.e.,

\[
\delta B(\theta_1 + \theta_2; x) = \int_{\Gamma_0} d\lambda(\eta) \delta^{[\eta]+1} B(\theta_1; \eta \cup \{x\}) e_{\lambda}(\theta_2, \eta), \quad a.a. x \in \mathbb{R}^d, \quad \theta_1, \theta_2 \in L^1,
\]

which allows to rewrite (4.3) as

\[
\delta B \left(\theta e^{-\varepsilon\phi(y-\cdot)} + \frac{e^{-\varepsilon\phi(y-\cdot)} - 1}{\varepsilon}; x \right) = \int_{\Gamma_0} d\lambda(\eta) \delta^{[\eta]+1} B(\theta - \phi(y-\cdot); \eta \cup \{x\})
\times e_{\lambda} \left(\theta \left(e^{-\varepsilon\phi(y-\cdot)} - 1 \right) \frac{e^{-\varepsilon\phi(y-\cdot)} - 1}{\varepsilon} + \phi(y-\cdot), \eta \right)
\]
for a.a. \(x,y \in \mathbb{R}^d \). Concerning the function

\[
f_\varepsilon := f_\varepsilon(\theta, \phi, y) := \theta \left(e^{-(\varepsilon \phi(y-\cdot))} - 1 \right) + \frac{e^{-\varepsilon \phi(y-\cdot)} - 1}{\varepsilon} + \phi(y - \cdot),
\]

which appears in (4.4), for a.a. \(y \in \mathbb{R}^d \), one clearly has \(\lim_{\varepsilon \to 0} f_\varepsilon = 0 \) a.e. in \(\mathbb{R}^d \). By definition (2.4), the latter implies that \(e_\lambda(f_\varepsilon) \) converges \(\lambda \)-a.e. to \(e_\lambda(0) \). Moreover, for the whole integrand function in (4.4), estimates (2.9), (2.10) yield for any \(r > 0 \) and \(\lambda \)-a.a. \(\eta \in \Gamma_0 \)

\[
\left| \delta^{[|\eta|+1]} B(\theta - \phi(y - \cdot); \eta \cup \{x\}) e_\lambda(f_\varepsilon, \eta) \right|
\leq \left\| \delta^{[|\eta|+1]} B(\theta - \phi(y - \cdot); \cdot) \right\|_{L^\infty(\mathbb{R}^d(|\eta|+1))} e_\lambda(|f_\varepsilon|, \eta)
\leq (|\eta|+1)! \left(\frac{e}{r} \right)^{|\eta|+1} e_\lambda(|f_\varepsilon|, \eta) \sup_{\|\theta_0\|_{L^1} \leq r} |B(\theta - \phi(y - \cdot) + \theta_0)|
\leq (|\eta|+1)! \left(\frac{e}{r} \right)^{|\eta|+1} e_\lambda(|\theta| + 2|\phi(y - \cdot)|, \eta) e^{-\frac{|y-\phi(y-\cdot)|L^1+r}{\eta}} \|B\|_\alpha
\]

with

\[
\int_{\Gamma_0} d\lambda(\eta) (|\eta|+1)! \left(\frac{e}{r} \right)^{|\eta|+1} e_\lambda(|\theta| + 2|\phi(y - \cdot)|, \eta) = \sum_{n=0}^{\infty} (n+1) \left(\frac{e}{r} \right)^{n+1} (|\|\theta\|_{L^1} + 2\|\phi\|_{L^1})^n
\]

being finite for any \(r > \epsilon (\|\theta\|_{L^1} + 2\|\phi\|_{L^1}) \).

As a result, by an application of the Lebesgue dominated convergence theorem we have proved that, for a.a. \(x,y \in \mathbb{R}^d \), (4.4) converges as \(\varepsilon \) tends to zero to

\[
\int_{\Gamma_0} d\lambda(\eta) \delta^{[|\eta|+1]} B(\theta - \phi(y - \cdot); \eta \cup \{x\}) e_\lambda(0, \eta) = \delta B(\theta - \phi(y - \cdot); x).
\]

In addition, for the integrand function which appears in \(\hat{L}_{\varepsilon, \text{ren}} B(\theta) \) we have

\[
\left| a(x-y) e^{-\varepsilon \phi(x-y)} (\theta(y) - \theta(x)) \delta B \left(\theta e^{-\varepsilon \phi(y-\cdot)} + \frac{e^{-\varepsilon \phi(y-\cdot)} - 1}{\varepsilon}; x \right) \right|
\leq \frac{e}{\alpha} a(x-y) |\theta(y) - \theta(x)| \|B\|_\alpha \exp \left(\frac{1}{\alpha} \|\theta\|_{L^1} + \frac{1}{\alpha} \|\phi\|_{L^1} \right)
\]

for all \(\varepsilon > 0 \) and a.a. \(x,y \in \mathbb{R}^d \), leading through a second application of the Lebesgue dominated convergence theorem to the required limit.

(ii) In Lemma 3.3 replace \(\varphi \) by \(e^{-\varepsilon \phi} \), \(\psi \) by \(e^{-\varepsilon \phi - \frac{1}{\varepsilon}} \), and \(k \) by \(\varepsilon \). Arguments similar to prove Proposition 3.2 complete the proof for \(\hat{L}_{\varepsilon, \text{ren}} \). A similar proof holds for \(\hat{L}_V \). \(\square \)

Proposition 4.2 (ii) provides similar estimate of norms for \(\hat{L}_{\varepsilon, \text{ren}}, \varepsilon > 0 \), and the limiting mapping \(\hat{L}_V \). According to the Ovsjannikov-type result used to prove Theorem 3.1, this means that given any \(B_{0,V}, B_{0,\text{ren}} \in \mathcal{E}_\alpha, \varepsilon > 0 \), for each \(\alpha \in (0, \alpha_0) \) there is a \(T > 0 \) such that there is a unique solution \(B_{t,V}^{(\varepsilon)} : [0, T) \to \mathcal{E}_\alpha, \varepsilon > 0 \), to each initial value problem (4.2) and a unique solution \(B_{t,\text{ren}} : [0, T) \to \mathcal{E}_\alpha \) to the initial value problem

\[
(4.5) \quad \frac{\partial}{\partial t} B_{t,V} = \hat{L}_V B_{t,V}, \quad B_{t,V} \big|_{t=0} = B_{0,V}.
\]

In other words, independent of the initial value problem under consideration, the solutions obtained are defined on the same time-interval and with values in the same Banach space. For more details see e.g. Theorem 2.5 and its proof in [5]. Therefore, it is natural to analyze under which conditions the solutions to (4.2) converge to the solution to (4.5). This follows from a general result presented in [5] (Theorem 4.3). However, to proceed to an application of this general result one needs the following estimate of norms.
Proposition 4.3. Assume that $0 \leq \phi \in L^1 \cap L^\infty$ and let $\alpha_0 > \alpha > 0$ be given. Then, for all $B \in \mathcal{E}_\alpha$, $\alpha' \in (\alpha, \alpha_0]$, the following estimate holds:

$$\|\hat{L}_{\varepsilon,\text{ren}} B - \hat{L}_V B\|_{\alpha'} \leq 2\varepsilon\|\alpha\| L^\infty \frac{e\alpha_0}{\alpha} \| B \|_{\alpha'} e^{\frac{\|\phi\| L^1}{\alpha}} \left(2\varepsilon \|\phi\| L^1 + \frac{\alpha_0}{\varepsilon} \right) \frac{1}{\alpha'' - \alpha'} + \frac{8\alpha_0^2}{(\alpha'' - \alpha^2)}$$

for all α' such that $\alpha \leq \alpha' < \alpha''$ and all $\varepsilon > 0$.

Proof. First we observe that

$$\left| \langle \hat{L}_{\varepsilon,\text{ren}} B \rangle (\theta) - \langle \hat{L}_V B \rangle (\theta) \right| \leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} dy a(x-y) |\theta(y) - \theta(x)|$$

with

$$\left| e^{-\varepsilon \phi(x-y)} \delta B \left(\theta e^{-\varepsilon \phi(y-\cdot)} + \frac{e^{-\varepsilon \phi(y-\cdot)} - 1}{\varepsilon}; x \right) - \delta B \left(\theta - \phi(y-\cdot); x \right) \right|$$

(4.6)

In order to estimate (4.6), given any $\theta_0, \theta_1, \theta_2 \in L^1$, let us consider the function $C_{\theta_0, \theta_1, \theta_2}(t) = dB(\theta_0 + (1-t)\theta_2; \theta_0)$, $t \in [0, 1]$, where dB is the first order differential of B, defined in (2.8). One has

$$\frac{\partial}{\partial t} C_{\theta_0, \theta_1, \theta_2}(t) = \frac{\partial}{\partial s} C_{\theta_0, \theta_1, \theta_2}(t+s) \bigg|_{s=0}$$

$$= \frac{\partial}{\partial s} dB(\theta_2 + t(\theta_1 - \theta_2) + s(\theta_1 - \theta_2); \theta_0) \bigg|_{s=0}$$

$$= \frac{\partial^2}{\partial s \partial s_2} B(\theta_2 + t(\theta_1 - \theta_2) + s_1(\theta_1 - \theta_2) + s_2\theta_0) \bigg|_{s_1=s_2=0}$$

$$= \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy (\theta_1(x) - \theta_2(x)) \delta^2 B(\theta_2 + t(\theta_1 - \theta_2); x, y),$$

leading to

$$|dB(\theta_1; \theta_0) - dB(\theta_2; \theta_0)|$$

$$= |C_{\theta_0, \theta_1, \theta_2}(1) - C_{\theta_0, \theta_1, \theta_2}(0)|$$

$$\leq \max_{t \in [0, 1]} \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy |\theta_1(x) - \theta_2(x)| |\theta_0(y)| \|\delta^2 B(\theta_2 + t(\theta_1 - \theta_2); x, y)||_{L^\infty(\mathbb{R}^d)},$$

where, through estimate (2.10) with $r = \alpha''$

$$\|\delta^2 B(\theta_2 + t(\theta_1 - \theta_2); \cdot)||_{L^\infty(\mathbb{R}^d)} \leq 2 e^{\frac{3}{\alpha''}} \|B\|_{\alpha''} \exp \left(\frac{\|\theta_2 + t(\theta_1 - \theta_2)||_{L^1}}{\alpha''} \right).$$

As a result,

$$|dB(\theta_1; \theta_0) - dB(\theta_2; \theta_0)|$$

$$\leq 2 e^{\frac{3}{\alpha''}} \|\theta_1 - \theta_2\|_{L^1} \|\theta_0\|_{L^1} \|B\|_{\alpha''} \max_{t \in [0, 1]} \left(\frac{t\|\theta_1\|_{L^1} + (1-t)\|\theta_2\|_{L^1}}{\alpha''} \right)$$
for all $\theta_0, \theta_1, \theta_2 \in L^1$. In particular, this shows that for all $\theta_0 \in L^1$,

\[
\left| dB \left(\theta e^{-\varepsilon \phi(y - \cdot)} + \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon}; \theta_0 \right) - dB \left(\theta - \phi(y - \cdot); \theta_0 \right) \right|
\leq 2\varepsilon \frac{e^3}{\alpha^2} \| \phi \|_{L^\infty} \| B \|_{\alpha^\nu} (\| \theta \|_{L^1} + \| \phi \|_{L^1}) \| \theta_0 \|_{L^1}
\times \max_{t \in [0,1]} \exp \left(\frac{1}{\alpha^\nu} (t (\| \theta \|_{L^1} + \| \phi \|_{L^1}) + (1 - t) (\| \theta \|_{L^1} + \| \phi \|_{L^1})) \right)
= 2\varepsilon \frac{e^3}{\alpha^2} \| \phi \|_{L^\infty} \| B \|_{\alpha^\nu} (\| \theta \|_{L^1} + \| \phi \|_{L^1}) \exp \left(\frac{1}{\alpha^\nu} (\| \theta \|_{L^1} + \| \phi \|_{L^1}) \right) \| \theta_0 \|_{L^1}.
\]

where we have used the inequalities

\[
\| \theta e^{-\varepsilon \phi(y - \cdot)} - \theta \|_{L^1} \leq \varepsilon \| \phi \|_{L^\infty} \| \theta \|_{L^1},
\| \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon} + \phi(y - \cdot) \|_{L^1} \leq \varepsilon \| \phi \|_{L^\infty} \| \phi \|_{L^1},
\| \theta e^{-\varepsilon \phi(y - \cdot)} + \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon} \|_{L^1} \leq \| \theta \|_{L^1} + \| \phi \|_{L^1}.
\]

In other words, we have shown that the norm of the bounded linear functional on L^1

\[
L^1 \ni \theta_0 \mapsto dB \left(\theta e^{-\varepsilon \phi(y - \cdot)} + \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon}; \theta_0 \right) - dB \left(\theta - \phi(y - \cdot); \theta_0 \right)
\]

is bounded by

\[
Q := 2\varepsilon \frac{e^3}{\alpha^2} \| \phi \|_{L^\infty} \| B \|_{\alpha^\nu} (\| \theta \|_{L^1} + \| \phi \|_{L^1}) \exp \left(\frac{1}{\alpha^\nu} (\| \theta \|_{L^1} + \| \phi \|_{L^1}) \right).
\]

Since this operator norm is given by

\[
\left\| \delta B \left(\theta e^{-\varepsilon \phi(y - \cdot)} + \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon}; \cdot \right) - \delta B \left(\theta - \phi(y - \cdot); \cdot \right) \right\|_{L^\infty}
\]

cf. Subsection 2.2, this means that

\[
\left\| \delta B \left(\theta e^{-\varepsilon \phi(y - \cdot)} + \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon}; \cdot \right) - \delta B \left(\theta - \phi(y - \cdot); \cdot \right) \right\|_{L^\infty} \leq Q.
\]

In this way we obtain

\[
\left| \left(\tilde{L}_{\varepsilon, ren} B \right)(\theta) - \left(\tilde{L}_V B \right)(\theta) \right|
\leq \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} dy \, a(x - y) \, | \theta(y) - \theta(x) |
\times \left\{ \left\| \delta B \left(\theta e^{-\varepsilon \phi(y - \cdot)} + \frac{e^{-\varepsilon \phi(y - \cdot)} - 1}{\varepsilon}; \cdot \right) - \delta B \left(\theta - \phi(y - \cdot); \cdot \right) \right\|_{L^\infty}
+ \varepsilon \| \phi \|_{L^\infty} \| \delta B \left(\theta - \phi(y - \cdot); \cdot \right) \|_{L^\infty} \right\}
\leq 2 \varepsilon \| \phi \|_{L^\infty} \| a \|_{L^1} \frac{e}{\alpha^\nu} \exp \left(\frac{1}{\alpha^\nu} (\| \theta \|_{L^1} + \| \phi \|_{L^1}) \right) \| \theta \|_{L^1}
\times \left\{ 2 \varepsilon^2 \left(\| \theta \|_{L^1} + \| \phi \|_{L^1} \right) + 1 \right\} \| B \|_{\alpha^\nu}.
\]
and thus
\[\|L_{c,\text{ren}}B - \tilde{L}_V B\|_{\alpha'} \]
\[\leq 2\varepsilon\|\phi\|_{L^\infty}\|d\|_{L^1} \frac{e^{\varepsilon\|\phi\|_{L^\infty}}}{\alpha'} \left\{ 2\varepsilon^2 \sup_{\theta \in L^1} \left(\|\theta\|_{L^1} \exp \left(\frac{1}{\alpha'} - \frac{1}{\alpha'} \right) \right) \right\} \]
\[+ \left(2\varepsilon^2 \|\phi\|_{L^1} + 1 \right) \sup_{\theta \in L^1} \left(\|\theta\|_{L^1} \exp \left(\frac{1}{\alpha'} - \frac{1}{\alpha'} \right) \right) \|B\|_{\alpha''}, \]
and the proof follows using the inequalities \(xe^{-mx} \leq \frac{1}{me} \) and \(x^2e^{-mx} \leq \frac{4}{m^2e} \) for \(x \geq 0, m > 0. \)

We are now in conditions to state the following result.

Theorem 4.4. Given an \(0 < \alpha < \alpha_0 \), let \(B^{(\varepsilon)}_{t,\text{ren}}, B_{t,V}, t \in [0,T) \), be the local solutions in \(E_\alpha \) to the initial value problems (4.2), (4.5) with \(B^{(\varepsilon)}_{0,\text{ren}}, B_{0,V} \in E_{\alpha_0} \). If \(0 \leq \phi \in L^1 \cap L^\infty \) and \(\lim_{\varepsilon \to 0} \|B^{(\varepsilon)}_{0,\text{ren}} - B_{0,V}\|_{\alpha_0} = 0 \), then, for each \(t \in [0,T) \),

\[\lim_{\varepsilon \to 0} \|B^{(\varepsilon)}_{t,\text{ren}} - B_{t,V}\|_{\alpha} = 0. \]

Moreover, if \(B_{0,V}(\theta) = \exp \left(\int_{R^d} dx \rho_0(x)\theta(x) \right) \), \(\theta \in L^1 \), for some function \(0 \leq \rho_0 \in L^\infty \) such that \(\|\rho_0\|_{L^\infty} \leq \frac{1}{\alpha_0} \), then for each \(t \in [0,T) \),

\[B_{t,V}(\theta) = \exp \left(\int_{R^d} dx \rho_0(x)\theta(x) \right), \quad \theta \in L^1, \]

where \(0 \leq \rho \in L^\infty \) is a classical solution to the equation (4.1).

Proof. The first part follows directly from Proposition 4.3 and [5, Theorem 4.3], taking in [5, Theorem 4.3] \(p = 2 \) and

\[N_\varepsilon = 2\varepsilon\|a\|_{L^1}\|\phi\|_{L^\infty} \frac{e^{\varepsilon\|\phi\|_{L^1}}}{\alpha'} \max \left\{ 2e\|\phi\|_{L^1} + \frac{\alpha_0}{\alpha}, 8\alpha_0^2 \right\}. \]

Concerning the last part, we begin by observing that it has been shown in [1, Subsection 4.2] that given a \(0 \leq \rho_0 \in L^\infty \) such that \(\|\rho_0\|_{L^\infty} \leq \frac{1}{\alpha_0} \), there is a solution \(0 \leq \rho \in L^\infty \) to (4.1) such that \(\|\rho\|_{L^\infty} \leq \frac{1}{\alpha_0} \). This implies that \(B_{t,V} \), given by (4.7), does not leave the initial Banach space \(E_{\alpha_0} \subset E_\alpha \). Then, by an argument of uniqueness, to prove the last assertion amounts to show that \(B_{t,V} \) solves equation (4.5). For this purpose we note that for any \(\theta, \theta_1 \in L^1 \) we have

\[\frac{\partial}{\partial z_1} B_{t,V}(\theta + z_1\theta_1) \big|_{z_1 = 0} = B_{t,V}(\theta) \int_{R^d} dx \rho_0(x)\theta_1(x), \]

and thus \(\delta B_{t,V}(\theta; x) = B_{t,V}(\theta)\rho_1(x) \). Hence, for all \(\theta \in L^1 \),

\[(\tilde{L}_V B_{t,V})(\theta) = B_{t,V}(\theta) \int_{R^d} dx \int_{R^d} dy \frac{a(x-y)\theta(y)}{\theta(y) - \theta(x)} \rho_1(x)e^{-(\rho_1+\phi)(y)} \]
\[= B_{t,V}(\theta) \int_{R^d} dy \frac{a * \rho_1}{(a * \rho_1)}(y)e^{-(\rho_1+\phi)(y)} - \int_{R^d} dx \theta(x) \frac{a * e^{-(\rho_1+\phi)}(y)}{(x)\rho_1(x)}. \]

Since \(\rho_1 \) is a classical solution to (4.1), \(\rho_1 \) solves a weak form of equation (4.1), that is, the right-hand side of the latter equality is equal to

\[B_{t,V}(\theta) \frac{d}{dt} \int_{R^d} dx \rho_1(x)\theta(x) = \frac{\partial}{\partial t} B_{t,V}(\theta). \]
REFERENCES

