Immersive Authoring of Virtual Reality Training

F Cassola* M Pinto† D Mendes‡ L Morgado§ A Coelho¶ H Paredes‖
INESC TEC, FEUP INESC TEC, FEUP INESC TEC, FEUP INESC TEC, UAb INESC TEC, UTAD

ABSTRACT

The use of VR in industrial training contributes to reduce costs and risks, supporting more frequent and diversified use of experiential learning activities, an approach with proven results. In this work, we present an innovative immersive authoring tool for experiential learning in VR-based training. It enables a trainer to structure an entire VR training course in an immersive environment, defining its sub-components, models, tools, and settings, as well as specifying by demonstration the actions to be performed by trainees. The trainees performing the immersive training course have their actions recorded and matched to the ones specified by the trainer.

Index Terms: Applied computing—Education—Interactive learning environments; Computing methodologies—Computer graphics—Graphics systems and interfaces—Virtual reality

1 INTRODUCTION

In the industrial sector, the ability to adapt to requests with a high degree of customization and complexity implies longer cycle times. The application of virtual reality (VR) is a promising approach [1], helping operators minimize errors and to increase safety. Virtual reality environments are also used to perform operational tasks in industrial settings, as an experiential and situated learning approach, which has shown good results in areas such as work safety [2], medicine [3], mechanical maintenance [4] and mining [5]. Indeed, the use of a virtual environment to carry out learning activities presents a wide range of advantages when compared to training in a real context, namely reducing costs and risks [6, 7], higher control of training procedures (for example, scheduling training sessions and identifying action complexity), promoting experiential and situated learning, the ability to ensure the replication of the simulations carried out by trainees, the empowerment of self-learning processes [8, 9], and triggering emotions furthering the interest and engagement of learners [10].

However, the creation of training experiences in VR is limited, due to its expensive and time-consuming development process (e.g. Unity or Unreal Engine) that requires software development experts [11]. To mitigate this hurdle, authoring tools have been proposed for development of VR applications for training and certification (e.g. EON Reality and XVR Simulation). Current limitations of these approaches include: lack of integration with existing data: such tools do not allow the creation of VR scenarios from pre-existing data in organizations, such as engineering CAD files; desktop-oriented, non-immersive authoring processes that detach the immersive experience from its creation (users specify training procedures without experiencing the trainee task performance perspective).

We tackle these limitations with a VR authoring tool, enabling immersive authoring of immersive training. With an authentic VR environment from pre-existing CAD data (created by the Vestas Wind Systems Company team), digital representations are generated, following the concept of digital twins [12]. This authenticity brings trainers and trainees experience varied and rich experiential learning for industrial maintenance scenarios.

2 VR AUTHORIZING TOOL

We developed an immersive authoring tool in VR for trainers to create immersive training courses. The actions that the trainee can perform in the virtual environment are executed by example on industrial machinery, and descriptive information is added. These actions are structured as procedures, as described in the next subsection. The tool was designed as a generic approach training procedures on engineering components, and is currently being applied with training of maintenance procedures on wind turbines.

Defining Course Structure In the VR environment, the trainer can create courses and specify their elements: training modules and their procedures, and the steps of each procedure (Fig. 1 Left). This information defines the context for the subsequent immersive actions, both for their creation and their editing. This is currently being done in a traditional windowed dialogue metaphor (Fig. 1 Right), only with the side-by-side information at a lateral pane, to support head-rotation viewing. We envision recreating this task in a more immersive mode of interaction.

Setting Up the Environment The tool allows the trainer to setup the training environment, specifying: the visual space for the training (Fig. 2 Left); the starting position of the trainee (Fig. 2 Right). The session is executed by example (Fig. 3 Right), only with the side-by-side information at a lateral pane, to support head-rotation viewing. We envision recreating this task in a more immersive mode of interaction.
Conclusion

This tool serves as a proof-of-concept that demonstrated the feasibility of immersive authoring of immersive training. The industrial machinery (wind turbines) is particularly detailed and originated various challenges, such as heavy model loading, and massive numbers of parts to interact with. The system thus is an exemplar of interaction solutions that can be employed in other systems, enabling other research inquiries to be explored in the future.

Acknowledgments

Work financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 under the Portugal 2020 Partnership Agreement, and through the Portuguese National Innovation Agency (ANI) as a part of project POCl-01-0247-FEDER-038524.

References