Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.2/1534
Título: A hierarchical cluster system based on Horton-Strahler rules for river networks
Autor: Costa, Fernando Pestana da
Grinfeld, Michael
Wattis, Jonathan A. D.
Palavras-chave: Coagulation equations
Cluster dynamics
Horton-Strahler rules
Data: Out-2002
Editora: Massachusetts Institute of Technology
Citação: Costa, Fernnado Pestana da; Grinfeld, Michael; Wattis, Jonathan A. D. - A hierarchical cluster system based on Horton-Strahler rules for river networks." Studies in Applied Mathematics". ISSN 1467-9590. Vol.109, Nº 3, (October 2002), p. 163-204
Resumo: We consider a cluster system in which each cluster is characterized by two parameters: an \order" i; following Horton-Strahler's rules, and a \mass" j following the usual additive rule. Denoting by ci;j (t) the concen- tration of clusters of order i and mass j at time t; we derive a coagulation- like ordinary di erential system for the time dynamics of these clusters. Results about existence and the behaviour of solutions as t ! 1 are ob- tained, in particular we prove that ci;j (t) ! 0 and Ni(c(t)) ! 0 as t ! 1; where the functional Ni( ) measures the total amount of clusters of a given xed order i: Exact and approximate equations for the time evolution of these functionals are derived. We also present numerical results that sug- gest the existence of self-similar solutions to these approximate equations and discuss its possible relevance for an interpretation of Horton's law of river numbers
URI: http://hdl.handle.net/10400.2/1534
ISSN: 1467-9590
Aparece nas colecções:Matemática e Estatística - Artigos em revistas internacionais / Papers in international journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
10.1.1.7.4083[1].pdf648,68 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.