Polymer Measure: Varadhan’s Renormalization Revisited

Wolfgang Bock
CMAF, University of Lisbon, P 1649-003 Lisbon, Portugal
bock@campus.ul.pt

Maria João Oliveira
Universidade Aberta, P 1269-001 Lisbon, Portugal
CMAF, University of Lisbon, P 1649-003 Lisbon, Portugal
oliveira@cii.fc.ul.pt

José Luís da Silva
CCEE, University of Madeira, P 9000-390 Funchal, Portugal
CCM, University of Madeira, P 9000-390 Funchal, Portugal
luis@uma.pt

Ludwig Streit
Forschungszentrum BiBoS, Bielefeld University, D 33501 Bielefeld, Germany
CCM, University of Madeira, P 9000-390 Funchal, Portugal
streit@physik.uni-bielefeld.de

Abstract
Through chaos decomposition we improve the Varadhan estimate for the rate of convergence of the centered approximate self-intersection local time of planar Brownian motion.

Keywords: Edwards model, self-intersection local time, Varadhan renormalization, white noise analysis

Mathematics Subject Classifications (2010): 28C20, 41A25, 60H40, 60J55, 60J65, 82D60
1 Introduction

The Edwards model [2] for self-repelling or "weakly self-avoiding" d-dimensional Brownian motion, with applications in polymer physics and quantum field theory, is informally given by a Gibbs factor

$$G = \frac{1}{Z} \exp \left(-g \int_0^T ds \int_0^t dt \delta (B(s) - B(t)) \right)$$

with $g > 0$ and

$$Z = E \left(\exp \left(-g \int_0^T ds \int_0^t dt \delta (B(s) - B(t)) \right) \right).$$

Using

$$\delta_\varepsilon(x) := \frac{1}{(2\pi\varepsilon)^{d/2}} e^{-\frac{|x|^2}{2\varepsilon}}, \quad \varepsilon > 0,$$

one defines an approximate self-intersection local time by

$$L_\varepsilon := \int_0^T dt \int_0^t ds \delta_\varepsilon (B(t) - B(s)).$$

For $d \geq 2$

$$\lim_{\varepsilon \searrow 0} E(L_\varepsilon) = \infty.$$

For the planar case $d = 2$, Varadhan [3] has shown that centering

$$L_{\varepsilon,c} := L_\varepsilon - E(L_\varepsilon) \quad \text{and} \quad L_c := \lim_{\varepsilon \searrow 0} L_{\varepsilon,c}$$

is sufficient to make the Gibbs factor $G = Z^{-1} \exp (-gL_c)$ well defined. An estimate for the rate of convergence

$$||L_c - L_{\varepsilon,c}||_2^2 \leq \text{const.}\varepsilon^\alpha$$

for all $\alpha < 1/2$, is in Varadhan’s words, “the most difficult step of all and requires considerable estimation”. In this note we shall use a multiple Wiener integral or chaos expansion for an alternate and comparatively straightforward argument, extending the estimate to all $\alpha < 1$.

2
2 Fock space representation of the local time

The Ito-Segal-Wiener isomorphism relates the L^2 space of planar Brownian motion with the Fock space

$$\mathcal{F} = \left(\bigoplus_{n=0}^{\infty} \text{Sym} L^2(\mathbb{R}^n, n! d^n x) \right) \otimes^2.$$

We shall use the multi-index notation

$$n = (n_1, n_2), \quad n = n_1 + n_2, \quad n! = n_1! n_2!$$

The Fock space norm is then

$$\|F\|_2^2 = \sum_{n_i \geq 0} n! \|F_n\|_2^2.$$

For $L_{\varepsilon,c}$ the kernel functions F_n were computed explicitly in [1]. For the planar case the result is

Proposition 1 [1]: For $d = 2$ the kernel functions F_n of $L_{\varepsilon,c}(T)$ and $L_c(T)$ have their support on $[0, T]^n$ and are, with $\varepsilon > 0$, and $\varepsilon = 0$ respectively, for $n > 1$

$$F_{2n,\varepsilon}(u_1, \ldots, u_{2n}) = \frac{1}{2\pi} \left(-\frac{1}{2} \right)^n \frac{1}{n(n-1)n!} \left(\frac{1}{(v+\varepsilon)^{n-1}} - \frac{1}{(T-u+\varepsilon)^{n-1}} + \frac{1}{(v-u+\varepsilon)^{n-1}} \right),$$

where $v := \max_{1 \leq k \leq 2n} u_k \leq T$ and $u := \min_{1 \leq k \leq 2n} u_k \geq 0$. For $n = 1$

$$F_{2,\varepsilon}(u_1, u_2) = -\frac{1}{4\pi} \left(\ln(v+\varepsilon) + \ln(T-u+\varepsilon) - \ln(v-u+\varepsilon) - \ln(T+\varepsilon) \right).$$

All kernel functions F_n with odd n_i are zero.

2.1 The rate of convergence

Theorem 2 Given $T > 0$. Then for any $\alpha < 1$ there is a constant $C_{T,\alpha} > 0$ such that for all $\varepsilon > 0$

$$\|L_{\varepsilon,c}(T) - L_c(T)\|_2^2 \leq C_{T,\alpha} \varepsilon^\alpha.$$
Proof: From Proposition 1

\[\| F_{2n,0} - F_{2n,\varepsilon} \|_2^2 = \left(\frac{(n-1)2\pi 2^n n!}{n!} \right)^2 \int_0^T d^{2n} u_k K_{\varepsilon}^2(u,v,T) \]

where for \(n > 1 \)

\[K_{\varepsilon}(u,v,T) = \left(T^{-n+1} - (T + \varepsilon)^{-n+1} \right) - \left(v^{-n+1} - (v + \varepsilon)^{-n+1} \right) \]

\[- \left((T - u)^{-n+1} - (T - u + \varepsilon)^{-n+1} \right) + \left((v - u)^{-n+1} - (v - u + \varepsilon)^{-n+1} \right). \]

Since \(K_{\varepsilon}(u,v,T) \) does not depend on \(2n - 2 \) of the \(u_k \)-variables, we may integrate them out:

\[\| F_{2n,0} - F_{2n,\varepsilon} \|_2^2 = \left(\frac{(n-1)2\pi 2^n n!}{n!} \right)^2 \int_0^T \int_0^v du v K_{\varepsilon}(u,v,T). \]

Of the four terms in \(K_{\varepsilon} \), the last one is dominant so that

\[\| F_{2n,0} - F_{2n,\varepsilon} \|_2^2 \leq 16 \frac{2n(2n-1)^2}{(n-1)2\pi 2^n n!} \int_0^T \int_0^v du v \left(1 - \left(\frac{v - u}{v - u + \varepsilon} \right)^{n-1} \right)^2 \]

\[= 16 \frac{2n(2n-1)^2}{(n-1)2\pi 2^n n!} \int_0^T \int_0^{T-\tau} du \left(1 - \left(\frac{\tau}{\tau + \varepsilon} \right)^{n-1} \right)^2 \]

\[\leq 16 \frac{2n(2n-1)^2}{(n-1)2\pi 2^n n!} \int_0^T \int_0^{T-\tau} du \left(1 - \left(\frac{\tau}{\tau + \varepsilon} \right)^{n-1} \right)^2 \]

\[= 16 \frac{2n(2n-1)^2}{(n-1)2\pi 2^n n!} \int_0^T \int_0^{T-\tau} du \left(1 - \left(\frac{\tau}{\tau + \varepsilon} \right)^{n-1} \right)^2 \]

By Hölder’s inequality

\[\int_0^\varepsilon \frac{dx}{(x + \tau)^n} \leq \varepsilon^{1/q} \left(\int_0^\infty \frac{dx}{(x + \tau)^n p} \right)^{1/p} = \varepsilon^{1/q} \left(\frac{1}{np - 1} \right)^{1/p} \]

if \(\frac{1}{q} + \frac{1}{p} = 1 \). Insertion of this estimate into \((1) \) produces

\[\sum_{n:n > 1} (2n)! \| F_{2n,0} - F_{2n,\varepsilon} \|_2^2 \leq \frac{4p}{(2-p)\pi^2} T^2 \varepsilon^2 \sum_{n:n > 1} (2n)! \frac{2n(2n-1)}{(n2^n n!)^2} \frac{1}{(pn-1)^\pi} \]
which is convergent if $\frac{2}{p} > 1$, i.e., $q > 2$. For the $n = 1$ term an ε^2 estimate is likewise obtained via Hölder’s inequality.

Hence, for any $\alpha < 1$,

$$\|L_c(T) - L_{\varepsilon,c}(T)\|_2^2 = \sum_{n: n \geq 1} (2n)! \|F_{2n,0} - F_{2n,\varepsilon}\|_2^2 \leq C(T, \alpha)\varepsilon^\alpha, \quad \forall \varepsilon > 0.$$

\[\blacksquare\]

Acknowledgments

Financial support of FCT through the research project PTDC/MAT-STA/1284/2012 is gratefully acknowledged. W. B. and J. L. S. also would like to thank for financial support of IGK and DFG through SFB-701 (University of Bielefeld), respectively.

References

